Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021:175:71-92.
doi: 10.1007/10_2018_61.

Glycobiotechnology of the Insect Cell-Baculovirus Expression System Technology

Affiliations

Glycobiotechnology of the Insect Cell-Baculovirus Expression System Technology

Laura A Palomares et al. Adv Biochem Eng Biotechnol. 2021.

Abstract

The insect cell-baculovirus expression system technology (BEST) has a prominent role in producing recombinant proteins to be used as research and diagnostic reagents and vaccines. The glycosylation profile of proteins produced by the BEST is composed predominantly of terminal mannose glycans, and, in Trichoplusia ni cell lines, core α3 fucosylation, a profile different to that in mammals. Insects contain all the enzymatic activities needed for complex N- and O-glycosylation and sialylation, although few reports of complex glycosylation and sialylation by the BEST exist. The insect cell line and culture conditions determine the glycosylation profile of proteins produced by the BEST. The promoter used, dissolved oxygen tension, presence of sugar precursors, bovine serum or hemolymph, temperature, and the time of harvest all influence glycosylation, although more research is needed. The lack of activity of glycosylation enzymes possibly results from the transcription regulation and stress imposed by baculovirus infection. To solve this limitation, the glycosylation pathway of insect cells has been engineered to produce complex sialylated glycans and to eliminate α3 fucosylation, either by generating transgenic cell lines or by using baculovirus vectors. These strategies have been successful. Complex glycosylation, sialylation, and inhibition of α3 fucosylation have been achieved, although the majority of glycans still have terminal mannose residues. The implication of insect glycosylation in the proteins produced by the BEST is discussed. Graphical Abstract.

Keywords: Baculovirus; Cell engineering; Glycobiotechnology; Glycosylation; Insect cells; Recombinant protein.

PubMed Disclaimer

References

    1. Palomares LA, Realpe M, Ramírez OT (2015) An overview of cell culture engineering for the insect cell-baculovirus expression vector system (BEVS). In: Al-Rubeai M (ed) Animal cell culture. Cell engineering, vol 9. Cham, Springer International, pp 501–519 - DOI
    1. Cox MMJ, Hashimoto Y (2011) A fast track influenza virus vaccine produced in insect cells. J Invert Pathol 107:s31–s41 - DOI
    1. Orlova OV, Drutsa VL, Spirin PV, Popenko VI, Prasolov VS, Rubtsov PM, Kochetkov SN, Belzhelarskaya SN (2013) Role of N-linked glycans of HCV glycoprotein E1 in folding of structural proteins and formation of viral particles. Mol Biol 47:131–139 - DOI
    1. Wang Y, Norgård M, Andersson G (2005) N-Glycosylation influences the latency and catalytic properties of mammalian purple acid phosphatase. Arch Biochem Biophys 435:147–156 - PubMed - DOI
    1. Cox MMJ (2012) Recombinant protein vaccines produced in insect cells. Vaccine 30:1759–1766 - PubMed - PMC - DOI

Substances

LinkOut - more resources