Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Jun 18;149(3):601-7.
doi: 10.1111/j.1432-1033.1985.tb08967.x.

Natural-abundance 13C nuclear magnetic resonance studies of regulation and overproduction of L-lysine by Brevibacterium flavum

Free article

Natural-abundance 13C nuclear magnetic resonance studies of regulation and overproduction of L-lysine by Brevibacterium flavum

L Inbar et al. Eur J Biochem. .
Free article

Abstract

Natural-abundance 13C NMR spectroscopy has been used to study the metabolism of the L-lysine-producing bacterium, Brevibacterium flavum. Relationships of biomass formation, precursor uptake, and product excretion, as a function of culture medium, oxygen supply and specific cell membrane permeability, were rapidly determined using 67.89-MHz 13C NMR. The induction of lysine production throughout the growth cycle was studied. Intracellular and extracellular levels of free metabolites and unconsumed precursor were quantitatively measured as a function of growth culture conditions. Limited availability of oxygen resulted in accumulation and excretion of unfavorable products: lactate, succinate, alanine and valine. However, under optimal aeration conditions L-lysine was the sole metabolite detected extracellularly. Various important long-lived intermediates and storage compounds were detected in the intact cells (by NMR measurements). Carbon resonances of carbohydrates and amino acids were resolved and easily identified. Of particular interest are those of trehalose carbons, a storage carbohydrate. Natural-abundance 13C NMR spectroscopy seems most suitable for biotechnological processes where high concentrations of intermediates and end-products can be observed. We anticipate that this approach will be employed to screen overproducing bacterial strains.

PubMed Disclaimer

Publication types

LinkOut - more resources