Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jun 11;18(1):179.
doi: 10.1186/s12906-018-2245-2.

Anti diabetic property of aqueous extract of Stevia rebaudiana Bertoni leaves in Streptozotocin-induced diabetes in albino rats

Affiliations

Anti diabetic property of aqueous extract of Stevia rebaudiana Bertoni leaves in Streptozotocin-induced diabetes in albino rats

Uswa Ahmad et al. BMC Complement Altern Med. .

Abstract

Background: Stevia (Stevia rebaudiana) natural, non-caloric sugar substitute is rich source of pharmacologically important glycoside stevioside that is linked to the pathology and complications of diabetes.

Methods: The current research was carried out to explore the anti-diabetic effect of aqueous extract of Stevia rebaudiana leaves in albino rats. For this purpose, diabetes was induced by administration of streptozotocin (40 mg/kg body weight, intraperitoneally). The diabetic rats were administered with aqueous stevia extract at different dose levels (200, 300, 400 and 500 ppm/kg b.w) for 8 weeks; the control rats were fed basal diet during this period.

Results: Stevia aqueous extract improved caloric management and weight control by decreasing the feed intake and body weight gain. Furthermore, intake of stevia extract resulted in significant (P < 0.05) decrease in the random blood glucose level (- 73.24%) and fasting blood glucose (- 66.09%) and glycosylated (HbA1c) hemoglobin (5.32%) while insulin (17.82 μIU/mL) and liver glycogen (45.02 mg/g) levels significantly improved in the diabetic rats, compared with the diabetic and non-diabetic control rats after 8 weeks study period.

Conclusions: It is concluded that aqueous extact of stevia has anti-diabetic effects in albino rats, and therefore could be promising nutraceutical therapy for the management of diabetes and its associated complications.

Keywords: Diabetes; Fasting blood glucose; HbA1c; Insulin; Liver glycogen; Random blood glucose; Stevia rebaudiana bertoni; Stevioside.

PubMed Disclaimer

Conflict of interest statement

Ethics approval

Before doing the research, ethical approval was obtained from Institutional Review Board Faculty of Science & Technology, Government College University, Faisalabad, Pakistan (IRB no. 0093106, 2/10/2017). The procedure followed the instructions of Good Laboratory Practice (GLP).

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Feed intake (g) in normal and diabetic rats during 8 weeks (rat/week). Results are expressed as amount of feed intake levels of diabetic and non-diabetic rats (mean ± standard deviation (SD). n = 10). The feed intake of diabetic rats (D1, D2, D3 and D4) received stevia aqueous extract in different concentrations (200, 300, 400 and 500 ppm) respectively significantly (P < 0.05) decreased from non-diabetic (N0) and diabetic (D0) control groups
Fig. 2
Fig. 2
Water intake (mL) in normal and diabetic rats during 8 weeks (rat/week). Results are expressed as amount of water intake levels of diabetic and non-diabetic rats (mean ± standard deviation (SD). n = 10). The water intake of diabetic rats (D1, D2, D3 and D4) received stevia aqueous extract in different concentrations (200, 300, 400 and 500 ppm) respectively significantly (P < 0.05) decreased from non-diabetic (N0) and diabetic (D0) control groups
Fig. 3
Fig. 3
Effect of Stevia aqueous extract on the glycosylated hemoglobin (HbA1c) level of the rats. Results are expressed as percentage of HbA1c levels of diabetic and non-diabetic rats (mean ± standard deviation (SD). n = 10). a, b, c, d represent significant difference (P < 0.05) in HbA1c levels treatment wise. HbA1c levels of diabetic rats (D1, D2, D3 and D4) received stevia aqueous extract in different concentrations (200, 300, 400 and 500 ppm) respectively significantly (P < 0.05) decreased as compared diabetic (D0) control groups and near to N0
Fig. 4
Fig. 4
Effect of Stevia aqueous extract on insulin levels of different groups of rats. Results are expressed as concentration of insulin levels of diabetic and non-diabetic rats (mean ± standard deviation (SD). n = 10). a, b, c, d represent significant difference (P < 0.05) in insulin levels treatment wise. The insulin levels of diabetic rats (D1, D2, D3 and D4) received stevia aqueous extract in different concentrations (200, 300, 400 and 500 ppm) respectively significantly (P < 0.05) increased as compared diabetic (D0) control groups and near to N0
Fig. 5
Fig. 5
Effect of Stevia aqueous extract on the glycogen level of the rats. Results are expressed as concentration of glycogen levels of diabetic and non-diabetic rats (mean ± standard deviation (SD). n = 10). a, b, c, d represent significant difference (P < 0.05) in insulin levels treatment wise. The glycogen levels of diabetic rats (D1, D2, D3 and D4) received stevia aqueous extract in different concentrations (200, 300, 400 and 500 ppm) respectively significantly (P < 0.05) increased as compared diabetic (D0) control groups and near to N0

References

    1. American Diabetes Association Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37(Suppl 1):S81–S90. doi: 10.2337/dc14-S081. - DOI - PubMed
    1. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11):e442. - PMC - PubMed
    1. Li G, Zhang P, Wang J, Gregg EW, Yang W, Gong Q. The long- term effect of life style interventions to prevent diabetes in the China Da Qing diabetes prevention study: a 20-year follow-up study. Lancet. 2008;371:1783–1789. doi: 10.1016/S0140-6736(08)60766-7. - DOI - PubMed
    1. Dhasarathan P, Theriappan P. Evaluation of anti-diabetic activity of Strychonous potatorum in alloxan induced diabetic rats. J Med Sci. 2011;2(2):670–674.
    1. Ramesh B, Pugalendi KV. Anti-hyperglycemic effect of Umbelliferone in Streptozotocin diabetic rats. J Med. Plants. 2006;9(4):562–566. - PubMed