Brain Cell Type Specific Gene Expression and Co-expression Network Architectures
- PMID: 29892006
- PMCID: PMC5995803
- DOI: 10.1038/s41598-018-27293-5
Brain Cell Type Specific Gene Expression and Co-expression Network Architectures
Erratum in
-
Author Correction: Brain Cell Type Specific Gene Expression and Co-expression Network Architectures.Sci Rep. 2021 Sep 24;11(1):19430. doi: 10.1038/s41598-021-97284-6. Sci Rep. 2021. PMID: 34561470 Free PMC article. No abstract available.
Abstract
Elucidating brain cell type specific gene expression patterns is critical towards a better understanding of how cell-cell communications may influence brain functions and dysfunctions. We set out to compare and contrast five human and murine cell type-specific transcriptome-wide RNA expression data sets that were generated within the past several years. We defined three measures of brain cell type-relative expression including specificity, enrichment, and absolute expression and identified corresponding consensus brain cell "signatures," which were well conserved across data sets. We validated that the relative expression of top cell type markers are associated with proxies for cell type proportions in bulk RNA expression data from postmortem human brain samples. We further validated novel marker genes using an orthogonal ATAC-seq dataset. We performed multiscale coexpression network analysis of the single cell data sets and identified robust cell-specific gene modules. To facilitate the use of the cell type-specific genes for cell type proportion estimation and deconvolution from bulk brain gene expression data, we developed an R package, BRETIGEA. In summary, we identified a set of novel brain cell consensus signatures and robust networks from the integration of multiple datasets and therefore transcend limitations related to technical issues characteristic of each individual study.
Conflict of interest statement
The authors declare no competing interests.
Figures









Similar articles
-
Investigating transcriptome-wide sex dimorphism by multi-level analysis of single-cell RNA sequencing data in ten mouse cell types.Biol Sex Differ. 2020 Nov 5;11(1):61. doi: 10.1186/s13293-020-00335-2. Biol Sex Differ. 2020. PMID: 33153500 Free PMC article.
-
Integrated single cell data analysis reveals cell specific networks and novel coactivation markers.BMC Syst Biol. 2016 Dec 5;10(Suppl 5):127. doi: 10.1186/s12918-016-0370-4. BMC Syst Biol. 2016. PMID: 28105940 Free PMC article.
-
Single-Cell RNA Sequencing Unveils Unique Transcriptomic Signatures of Organ-Specific Endothelial Cells.Circulation. 2020 Nov 10;142(19):1848-1862. doi: 10.1161/CIRCULATIONAHA.119.041433. Epub 2020 Sep 15. Circulation. 2020. PMID: 32929989 Free PMC article.
-
Coexpression and cosplicing network approaches for the study of mammalian brain transcriptomes.Int Rev Neurobiol. 2014;116:73-93. doi: 10.1016/B978-0-12-801105-8.00004-7. Int Rev Neurobiol. 2014. PMID: 25172472 Review.
-
Cell type-specific transcriptome profiling in mammalian brains.Front Biosci (Landmark Ed). 2016 Jun 1;21(5):973-85. doi: 10.2741/4434. Front Biosci (Landmark Ed). 2016. PMID: 27100485 Free PMC article. Review.
Cited by
-
GJA1 (connexin43) is a key regulator of Alzheimer's disease pathogenesis.Acta Neuropathol Commun. 2018 Dec 21;6(1):144. doi: 10.1186/s40478-018-0642-x. Acta Neuropathol Commun. 2018. PMID: 30577786 Free PMC article.
-
Single-cell transcriptome identifies molecular subtype of autism spectrum disorder impacted by de novo loss-of-function variants regulating glial cells.Hum Genomics. 2021 Nov 21;15(1):68. doi: 10.1186/s40246-021-00368-7. Hum Genomics. 2021. PMID: 34802461 Free PMC article.
-
Profiling neuronal methylome and hydroxymethylome of opioid use disorder in the human orbitofrontal cortex.Nat Commun. 2023 Jul 28;14(1):4544. doi: 10.1038/s41467-023-40285-y. Nat Commun. 2023. PMID: 37507366 Free PMC article.
-
Distinctive whole-brain cell types predict tissue damage patterns in thirteen neurodegenerative conditions.Elife. 2024 Mar 21;12:RP89368. doi: 10.7554/eLife.89368. Elife. 2024. PMID: 38512130 Free PMC article.
-
Integrated analysis of robust sex-biased gene signatures in human brain.Biol Sex Differ. 2023 May 24;14(1):36. doi: 10.1186/s13293-023-00515-w. Biol Sex Differ. 2023. PMID: 37221602 Free PMC article.
References
-
- Swanson LW, Bota M. Foundational model of structural connectivity in the nervous system with a schema for wiring diagrams, connectome, and basic plan architecture. Proceedings of the National Academy of Sciences of the United States of America. 2010;107:20610–20617. doi: 10.1073/pnas.1015128107. - DOI - PMC - PubMed
-
- Gokhan S, et al. Combinatorial profiles of oligodendrocyte-selective classes of transcriptional regulators differentially modulate myelin basic protein gene expression. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2005;25:8311–8321. doi: 10.1523/JNEUROSCI.1850-05.2005. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- R01 AG050986/AG/NIA NIH HHS/United States
- RF1 AG057440/AG/NIA NIH HHS/United States
- I01 BX002876/BX/BLRD VA/United States
- RF1 AG054014/AG/NIA NIH HHS/United States
- I01 BX003625/BX/BLRD VA/United States
- R01 NS052738/NS/NINDS NIH HHS/United States
- I01 BX002395/BX/BLRD VA/United States
- R37 NS042925/NS/NINDS NIH HHS/United States
- F30 AG052261/AG/NIA NIH HHS/United States
- U01 AG052411/AG/NIA NIH HHS/United States
- U01 AG046170/AG/NIA NIH HHS/United States
- R01 AG057907/AG/NIA NIH HHS/United States
- P01 DA008227/DA/NIDA NIH HHS/United States
- R01 MH109677/MH/NIMH NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous