Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2018 Jun 11;9(1):2256.
doi: 10.1038/s41467-018-04109-8.

Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants

Tokhir Dadaev  1 Edward J Saunders  1 Paul J Newcombe  2 Ezequiel Anokian  1 Daniel A Leongamornlert  1   3 Mark N Brook  1 Clara Cieza-Borrella  1 Martina Mijuskovic  1 Sarah Wakerell  1 Ali Amin Al Olama  4   5 Fredrick R Schumacher  6   7 Sonja I Berndt  8 Sara Benlloch  1   4 Mahbubl Ahmed  1 Chee Goh  1 Xin Sheng  9 Zhuo Zhang  9 Kenneth Muir  10   11 Koveela Govindasami  1 Artitaya Lophatananon  10   11 Victoria L Stevens  12 Susan M Gapstur  12 Brian D Carter  12 Catherine M Tangen  13 Phyllis Goodman  13 Ian M Thompson Jr  14 Jyotsna Batra  15   16 Suzanne Chambers  17   18 Leire Moya  15   16 Judith Clements  15   16 Lisa Horvath  19   20 Wayne Tilley  21 Gail Risbridger  22   23 Henrik Gronberg  24 Markus Aly  24   25 Tobias Nordström  24   26 Paul Pharoah  4   27 Nora Pashayan  27   28 Johanna Schleutker  29   30 Teuvo L J Tammela  31 Csilla Sipeky  29 Anssi Auvinen  32 Demetrius Albanes  8 Stephanie Weinstein  8 Alicja Wolk  33 Niclas Hakansson  33 Catharine West  34 Alison M Dunning  27 Neil Burnet  35 Lorelei Mucci  36 Edward Giovannucci  36 Gerald Andriole  37 Olivier Cussenot  38   39 Géraldine Cancel-Tassin  38   39 Stella Koutros  8 Laura E Beane Freeman  8 Karina Dalsgaard Sorensen  40   41 Torben Falck Orntoft  40   41 Michael Borre  41   42 Lovise Maehle  43 Eli Marie Grindedal  43 David E Neal  44   45   46 Jenny L Donovan  47 Freddie C Hamdy  46   48 Richard M Martin  47   49   50 Ruth C Travis  51 Tim J Key  51 Robert J Hamilton  52 Neil E Fleshner  52 Antonio Finelli  52 Sue Ann Ingles  9 Mariana C Stern  9 Barry Rosenstein  53   54 Sarah Kerns  55 Harry Ostrer  56 Yong-Jie Lu  57 Hong-Wei Zhang  58 Ninghan Feng  59 Xueying Mao  57 Xin Guo  60   61 Guomin Wang  62 Zan Sun  61 Graham G Giles  63   64 Melissa C Southey  65 Robert J MacInnis  63   64 Liesel M FitzGerald  64   66 Adam S Kibel  67 Bettina F Drake  37 Ana Vega  68 Antonio Gómez-Caamaño  69 Laura Fachal  4   68 Robert Szulkin  70   71 Martin Eklund  24 Manolis Kogevinas  72   73   74   75 Javier Llorca  73   76 Gemma Castaño-Vinyals  72   73   74   75 Kathryn L Penney  77 Meir Stampfer  77 Jong Y Park  78 Thomas A Sellers  78 Hui-Yi Lin  79 Janet L Stanford  80   81 Cezary Cybulski  82 Dominika Wokolorczyk  82 Jan Lubinski  82 Elaine A Ostrander  83 Milan S Geybels  80 Børge G Nordestgaard  84   85 Sune F Nielsen  84   85 Maren Weisher  85 Rasmus Bisbjerg  86 Martin Andreas Røder  87 Peter Iversen  84   87 Hermann Brenner  88   89   90 Katarina Cuk  88 Bernd Holleczek  91 Christiane Maier  92 Manuel Luedeke  92 Thomas Schnoeller  93 Jeri Kim  94 Christopher J Logothetis  94 Esther M John  95   96 Manuel R Teixeira  97   98 Paula Paulo  97 Marta Cardoso  97 Susan L Neuhausen  99 Linda Steele  99 Yuan Chun Ding  99 Kim De Ruyck  100 Gert De Meerleer  100 Piet Ost  101 Azad Razack  102 Jasmine Lim  102 Soo-Hwang Teo  103 Daniel W Lin  80   104 Lisa F Newcomb  80   104 Davor Lessel  105 Marija Gamulin  106 Tomislav Kulis  107 Radka Kaneva  108 Nawaid Usmani  109   110 Chavdar Slavov  111 Vanio Mitev  108 Matthew Parliament  109   110 Sandeep Singhal  109 Frank Claessens  112 Steven Joniau  113 Thomas Van den Broeck  112   113 Samantha Larkin  114 Paul A Townsend  115 Claire Aukim-Hastie  116 Manuela Gago-Dominguez  117   118 Jose Esteban Castelao  119 Maria Elena Martinez  120 Monique J Roobol  121 Guido Jenster  121 Ron H N van Schaik  122 Florence Menegaux  123 Thérèse Truong  123 Yves Akoli Koudou  123 Jianfeng Xu  124 Kay-Tee Khaw  125 Lisa Cannon-Albright  126   127 Hardev Pandha  116 Agnieszka Michael  116 Andrzej Kierzek  116 Stephen N Thibodeau  128 Shannon K McDonnell  129 Daniel J Schaid  129 Sara Lindstrom  130 Constance Turman  131 Jing Ma  77 David J Hunter  131 Elio Riboli  132 Afshan Siddiq  133 Federico Canzian  134 Laurence N Kolonel  135 Loic Le Marchand  135 Robert N Hoover  8 Mitchell J Machiela  8 Peter Kraft  131 PRACTICAL (Prostate Cancer Association Group to Investigate Cancer-Associated Alterations in the Genome) ConsortiumMatthew Freedman  136 Fredrik Wiklund  24 Stephen Chanock  8 Brian E Henderson  9 Douglas F Easton  4   27 Christopher A Haiman  9 Rosalind A Eeles  1   137 David V Conti  9 Zsofia Kote-Jarai  138
Collaborators, Affiliations
Meta-Analysis

Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants

Tokhir Dadaev et al. Nat Commun. .

Abstract

Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1
Overview of the fine-mapping workflow. Flowchart describing the procedure followed during fine-mapping, providing an overview of the outcomes at each stage and suggesting possible applications for the final catalogue of variants
Fig. 2
Fig. 2
Polar bar plot depicting the proportion of tag variants assigned each functional annotation within the 95% credible set selected by JAM (red bars), relative to tags that were not selected as candidates during fine-mapping (blue bars). Binary annotations for all respective proxy variants were inherited by their tag. Annotations are grouped by category and ordered according to the proportion of variants in the credible set that receive each specific annotation. For greater clarity at lower values the plot axis is capped at 50%, therefore for annotation classes that exceed this limit (Heterochromatin and Coding) the total percentage of tags receiving the annotation is specified in brackets
Fig. 3
Fig. 3
Locus Explorer plots of results and annotations at three regions. a Chr2q37-ANO7; b Chr6q22-RFX6; c Chr21q22-TMPRSS2. Upper section shows regional association plots for the initial EUR meta-analysis data depicting variant P-values (−log10(P) panel) and fine-mapping results indicating the posterior probability of association for priority pruner tags (PostProb panel). Triangles and circles on the meta-analysis plot denote variants directly genotyped in the OncoArray study and imputed variants respectively, with colours used to indicate all variants in linkage disequilibrium (LD) at r2 > 0.5 with those selected in the credible set. Names of the representative variants for each independent signal used in the familial relative risk calculation are shown in black and the original GWAS tag SNP marked in red. Only variants selected in the credible set are shown on the fine-mapping results plot, with positions of tags included in the 95% credible set marked as dashed lines and positions of all their respective proxy SNPs indicated as coloured circles. Middle section shows additional information regarding the density of directly genotyped variants within the OncoArray cohort and total imputed markers analysed (SNP panel) and the extent of variation correlated with tags in the credible set at LD r2 > 0.5 (R2 panel). Lower section indicates the relative positions of genes and biological annotations. Genes on the positive and negative strand are denoted by green and purple colours, respectively. Annotations displayed are as follows: histone modifications in ENCODE tier 1 cell lines (Histone track); the positions of variants that are eQTLs with prostate tumour expression in TCGA prostate adenocarcinoma samples and the respective genes for which expression is altered (eQTL track); chromatin state categorisations in the PrEC cell line by ChromHMM (ChromHMM track); the position of conserved element peaks (Conserved track); and the position of DNaseI hypersensitivity site peaks in ENCODE prostate cell lines (DNaseI track)

References

    1. Kote-Jarai Z, et al. BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: implications for genetic testing in prostate cancer patients. Br. J. Cancer. 2011;105:1230–1234. doi: 10.1038/bjc.2011.383. - DOI - PMC - PubMed
    1. Pritchard CC, et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N. Engl. J. Med. 2016;375:443–453. doi: 10.1056/NEJMoa1603144. - DOI - PMC - PubMed
    1. Mikropoulos C, Goh C, Leongamornlert D, Kote-Jarai Z, Eeles R. Translating genetic risk factors for prostate cancer to the clinic: 2013 and beyond. Future Oncol. 2014;10:1679–1694. doi: 10.2217/fon.14.72. - DOI - PubMed
    1. Conti DV, Gauderman WJ. SNPs, haplotypes, and model selection in a candidate gene region: the SIMPle analysis for multilocus data. Genet. Epidemiol. 2004;27:429–441. doi: 10.1002/gepi.20039. - DOI - PubMed
    1. Fridley BL. Bayesian variable and model selection methods for genetic association studies. Genet. Epidemiol. 2009;33:27–37. doi: 10.1002/gepi.20353. - DOI - PubMed

Publication types