Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Jun;75(6):2056-64.
doi: 10.1172/JCI111925.

Cyclic adenosine monophosphate-stimulated bicarbonate secretion in rabbit cortical collecting tubules

Cyclic adenosine monophosphate-stimulated bicarbonate secretion in rabbit cortical collecting tubules

V L Schuster. J Clin Invest. 1985 Jun.

Abstract

We studied the effects of cyclic AMP (cAMP) on HCO-3 transport by rabbit cortical collecting tubules perfused in vitro. Net HCO-3 secretion was observed in tubules from NaHCO3- loaded rabbits. 8-Bromo-cAMP-stimulated net HCO-3 secretion, whereas secretion fell with time in control tubules. Both isoproterenol and vasopressin (ADH) are known to stimulate adenylate cyclase in this epithelium; however, only isoproterenol stimulated net HCO-3 secretion. The mechanism of cAMP-stimulated HCO-3 secretion was examined. If both HCO-3 and H+ secretion were to occur simultaneously in tubules exhibiting net HCO-3 secretion, cAMP might increase the net HCO-3 secretory rate by inhibiting H+ secretion, by stimulating HCO-3 secretion, or both. These possibilities were examined using basolateral addition of the disulfonic stilbene (4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS). In acidifying tubules from NH4Cl-loaded rabbits, DIDS eliminated HCO-3 reabsorption, a result consistent with known effects of DIDS as an inhibitor of H+ secretion. In contrast, cAMP left acidification (H+ secretion) intact. DIDS applied to HCO-3 secretory tubules failed to increase the HCO-3 secretory rate, indicating minimal H+ secretion in HCO-3 secreting tubules. Thus, inhibition of H+ secretion by cAMP could not account for the cAMP-induced stimulation of net HCO-3 secretion. cAMP-stimulated HCO-3 secretion was reversibly eliminated by 0 Cl perfusate, whereas luminal DIDS had no effect. Bath amiloride (1 mM) failed to eliminate cAMP-stimulated HCO-3 secretion when bath [Na+] was 145 mM or 5 mM. cAMP depolarized the transepithelial voltage. The collected fluid [HCO-3] after cAMP could be accounted for by electrical driving forces, suggesting that cAMP stimulates passive HCO-3 secretion. However, cAMP did not alter HCO-3 permeability measured under conditions expected to inhibit transcellular HCO-3 movement (0 Cl- solutions and bath DIDS). This measured HCO-3 permeability was not high enough to account, by passive diffusion, for the HCO-3 fluxes observed in Cl-containing solutions. We conclude the following: cAMP increased net HCO3- secretion by stimulating HCO3- secretion and not by inhibiting H+ secretion; this HCO3- secretion may have occurred by Cl-HCO3- exchange; Na+-H+ exchange appeared not to play a role in basolateral H+ extrusion under these conditions; and the stimulation of HCO3- secretion by isoproterenol, but not ADH, suggests the existence of separate cell cAMP pools or cellular heterogeneity in this cAMP response.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Clin Invest. 1984 Jun;73(6):1659-67 - PubMed
    1. Am J Physiol. 1984 Feb;246(2 Pt 2):F240-5 - PubMed
    1. Am J Physiol. 1984 Jul;247(1 Pt 2):F50-60 - PubMed
    1. Am J Physiol. 1984 Aug;247(2 Pt 2):F291-302 - PubMed
    1. Kidney Int. 1985 Jan;27(1):25-30 - PubMed

Publication types

MeSH terms