Biocomputing for Portable, Resettable, and Quantitative Point-of-Care Diagnostics: Making the Glucose Meter a Logic-Gate Responsive Device for Measuring Many Clinically Relevant Targets
- PMID: 29893502
- PMCID: PMC6261302
- DOI: 10.1002/anie.201804292
Biocomputing for Portable, Resettable, and Quantitative Point-of-Care Diagnostics: Making the Glucose Meter a Logic-Gate Responsive Device for Measuring Many Clinically Relevant Targets
Abstract
It is recognized that biocomputing can provide intelligent solutions to complex biosensing projects. However, it remains challenging to transform biomolecular logic gates into convenient, portable, resettable and quantitative sensing systems for point-of-care (POC) diagnostics in a low-resource setting. To overcome these limitations, the first design of biocomputing on personal glucose meters (PGMs) is reported, which utilizes glucose and the reduced form of nicotinamide adenine dinucleotide as signal outputs, DNAzymes and protein enzymes as building blocks, and demonstrates a general platform for installing logic-gate responses (YES, NOT, INHIBIT, NOR, NAND, and OR) to a variety of biological species, such as cations (Na+ ), anions (citrate), organic metabolites (adenosine diphosphate and adenosine triphosphate) and enzymes (pyruvate kinase, alkaline phosphatase, and alcohol dehydrogenases). A concatenated logical gate platform that is resettable is also demonstrated. The system is highly modular and can be generally applied to POC diagnostics of many diseases, such as hyponatremia, hypernatremia, and hemolytic anemia. In addition to broadening the clinical applications of the PGM, the method reported opens a new avenue in biomolecular logic gates for the development of intelligent POC devices for on-site applications.
Keywords: DNA; biosensing; enzyme cascades; glucose meter; point-of-care testing.
© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Conflict of interest statement
Conflict of interest
The authors declare no conflict of interest.
Figures




Similar articles
-
Resettable and enzyme-free molecular logic devices for the intelligent amplification detection of multiple miRNAs via catalyzed hairpin assembly.Nanoscale. 2019 Mar 14;11(11):5048-5057. doi: 10.1039/c8nr10103e. Nanoscale. 2019. PMID: 30839977
-
The application of personal glucose meters as universal point-of-care diagnostic tools.Biosens Bioelectron. 2020 Jan 15;148:111835. doi: 10.1016/j.bios.2019.111835. Epub 2019 Nov 2. Biosens Bioelectron. 2020. PMID: 31707326 Review.
-
Recent Developments in Personal Glucose Meters as Point-of-Care Testing Devices (2020-2024).Biosensors (Basel). 2024 Aug 27;14(9):419. doi: 10.3390/bios14090419. Biosensors (Basel). 2024. PMID: 39329794 Free PMC article. Review.
-
Portable and sensitive detection of non-glucose target by enzyme-encapsulated metal-organic-framework using personal glucose meter.Biosens Bioelectron. 2022 Feb 15;198:113819. doi: 10.1016/j.bios.2021.113819. Epub 2021 Nov 19. Biosens Bioelectron. 2022. PMID: 34836711
-
Dose-Dependent Response of Personal Glucose Meters to Nicotinamide Coenzymes: Applications to Point-of-Care Diagnostics of Many Non-Glucose Targets in a Single Step.Angew Chem Int Ed Engl. 2016 Jan 11;55(2):732-6. doi: 10.1002/anie.201507563. Epub 2015 Nov 23. Angew Chem Int Ed Engl. 2016. PMID: 26593219 Free PMC article.
Cited by
-
Metal-Dependent DNAzymes for the Quantitative Detection of Metal Ions in Living Cells: Recent Progress, Current Challenges, and Latest Results on FRET Ratiometric Sensors.Inorg Chem. 2019 Oct 21;58(20):13696-13708. doi: 10.1021/acs.inorgchem.9b01280. Epub 2019 Jul 31. Inorg Chem. 2019. PMID: 31364355 Free PMC article. Review.
-
Recent advances of using personal glucose meter as a biosensor readout for non-glucose targets.Curr Anal Chem. 2022;18(6):705-722. doi: 10.2174/1573411017666210804105750. Epub 2021 Aug 4. Curr Anal Chem. 2022. PMID: 37811138 Free PMC article.
-
DNA-based constitutional dynamic networks as functional modules for logic gates and computing circuit operations.Chem Sci. 2021 Mar 17;12(15):5473-5483. doi: 10.1039/d1sc01098k. Chem Sci. 2021. PMID: 34168788 Free PMC article.
-
A highly sensitive and selective fluoride sensor based on a riboswitch-regulated transcription coupled with CRISPR-Cas13a tandem reaction.Chem Sci. 2021 Aug 9;12(35):11740-11747. doi: 10.1039/d1sc03508h. eCollection 2021 Sep 15. Chem Sci. 2021. PMID: 34659710 Free PMC article.
-
Catalyst-based biomolecular logic gates.Catalysts. 2022 Jul;12(7):712. doi: 10.3390/catal12070712. Epub 2022 Jun 29. Catalysts. 2022. PMID: 37377541 Free PMC article.
References
-
- a) Zhan W, Crooks RM, J. Am. Chem. Soc. 2003, 125, 9934–9935; - PubMed
- b) Zhou M, Du Y, Chen CG, Li BL, Wen D, Dong SJ, Wang EK, J. Am. Chem. Soc. 2010, 132, 2172–2174; - PubMed
- c) Chang B-Y; Crooks JA; Chow K-F; Mavré F; Crooks RM, J. Am. Chem. Soc. 2010, 132, 15404–15409; - PubMed
- d) Pei H, Liang L, Yao GB, Li J, Huang Q, Fan CH, Angew. Chem. Int. Ed. 2012, 51, 9020–9024; - PubMed
- e) Katz E, Minko S, Chem. Commun. 2015, 51, 3493–3500; - PubMed
- f) He KY, Li Y, Xiang BB, Zhao P, Hu YF, Huang Y, Li W, Nie Z, Yao SZ, Chem. Sci. 2015, 6, 3556–3564; - PMC - PubMed
- g) Li DD, Cheng W, Li YJ, Xu YJ, Li XM, Yin YB, Ju HX, Ding SJ, Anal. Chem. 2016, 88, 7500–7506; - PubMed
- h) Molinnus D, Poghossian A, Keusgen M, Katz E, Schoning MJ, Electroanalysis 2017, 29, 1840–1849; - PMC - PubMed
- i) Li Y, Sun SJ, Fan L, Hu SF, Huang Y, Zhang K, Nie Z, Yao SZ, Angew. Chem. Int. Ed. 2017, 56, 14888–14892; - PubMed
- j) Liang JY, Yu X, Yang TG, Li ML, Shen L, Jin Y, Liu HY, Phys. Chem. Chem. Phys. 2017, 19, 22472–22481; - PubMed
- k) Qu XM, Zhu D, Yao GB, Su S, Chao J, Liu HJ, Zuo XL, Wang LH, Shi JY, Wang LH, Huang W, Pei H, Fan CH, Angew. Chem. Int. Ed. 2017, 56, 1855–1858; - PubMed
- l) Li J, Green AA, Yan H, Fan CH, Nat. Chem. 2017, 9, 1056–1067; - PMC - PubMed
- m) Peng HY, Newbigging AM, Wang ZX, Tao J, Deng WC, Le XC, Zhang HQ, Anal. Chem. 2018, 90, 190–207. - PubMed
-
- a) Lake A, Shang S, Kolpashchikov DM, Angew. Chem. Int. Ed. 2010, 49, 4459–4462; - PubMed
- b) Liu Y, Offenhausser A, Mayer D, Angew. Chem. Int. Ed. 2010, 49, 2595–2598; - PubMed
- c) Benenson Y, Nat. Nanotech. 2011, 6, 465–467; - PubMed
- d) de Silva AP, Chem. Asian J. 2011, 6, 750–766; - PubMed
- e) Bel-Enguix G, Jiménez-López MD, Natural Computing 2012, 11, 131–139;
- f) Prokup A, Hemphill J, Deiters A, J. Am. Chem. Soc. 2012, 134, 3810–3815; - PubMed
- g) Gao JT, Liu YQ, Lin XD, Deng JK, Yin JJ, Wang S, Sci. Rep. 2017, 7 14014. - PMC - PubMed
-
- a) Bi S, Ji B, Zhang ZP, Zhu JJ, Chem. Sci. 2013, 4, 1858–1863;
- b) Zhang M, Ye BC, Chem. Commun. 2012, 48, 3647–3649; - PubMed
- c) Guo YH, Wu J, Ju HX, Chem. Sci. 2015, 6, 4318–4323; - PMC - PubMed
- d) Wang WJ, Huang S, Li JJ, Rui K, Bi S, Zhang JR, Zhu JJ, Chem. Sci. 2017, 8, 174–180; - PMC - PubMed
- e) Tang YD, Lu BY, Zhu ZT, Li BL, Chem. Sci. 2018, 9, 760–769. - PMC - PubMed
-
- a) Xianyu YL, Wang Z, Sun JS, Wang XF, Jiang XY, Small 2014, 10, 4833–4838; - PubMed
- b) Wu CT, Fan DQ, Zhou CY, Liu YQ, Wang EK, Anal. Chem. 2016, 88, 2899–2903; - PubMed
- c) Chen JH, Zhou SG, Wen JL, Angew. Chem. Int. Ed. 2015, 54, 446–450; - PubMed
- d) Huang YY, Pu F, Ren JS, Qu XG, Chem. Eur. J. 2017, 23, 9156–9161. - PubMed
-
- a) Tang LH, Wang Y, Li JH, Chem. Soc. Rev. 2015, 44, 6954–6980; - PubMed
- b) Ge L, Wang WX, Sun XM, Hou T, Li F, Anal. Chem. 2016, 88, 9691–9698; - PubMed
- c) Zhai QF, Fan DQ, Zhang XW, Li J, Wang EK, Npg Asia Mater. 2017, 9;
- d) Du Y, Han X, Wang CX, Li YH, Li BL, Duan HW, ACS Sens. 2018, 3, 54–58. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources