Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul 23;58(7):1459-1468.
doi: 10.1021/acs.jcim.8b00019. Epub 2018 Jun 25.

Improving Sequence-Based Prediction of Protein-Peptide Binding Residues by Introducing Intrinsic Disorder and a Consensus Method

Affiliations

Improving Sequence-Based Prediction of Protein-Peptide Binding Residues by Introducing Intrinsic Disorder and a Consensus Method

Zijuan Zhao et al. J Chem Inf Model. .

Abstract

Protein-peptide interaction is crucial for many cellular processes. It is difficult to determine the interaction by experiments as peptides are often very flexible in structure. Accurate sequence-based prediction of peptide-binding residues can facilitate the study of this interaction. In this work, we developed two novel sequence-based methods SVMpep and PepBind to identify the peptide-binding residues. Recent studies demonstrate that the protein-peptide binding is closely associated with intrinsic disorder. We thus introduced intrinsic disorder in our feature design and developed the ab initio method SVMpep. Experiments show that intrinsic disorder contributes to 1.2-5.2% improvement in area under the receiver operating characteristic curve (AUC). Comparison to the recent sequence-based method SPRINT-Seq reveals that SVMpep improves the AUC and Matthews correlation coefficient (MCC) by at least 7.7% and 70%, respectively. In addition, by combining SVMpep with two template-based methods S-SITE and TM-SITE, we next proposed the consensus-based method PepBind. Remarkably, compared with the latest structure-based method SPRINT-Str, PepBind improves the AUC and MCC by 1.7% and 28.3%, respectively, on the same independent test set of SPRINT-Str. The success of PepBind is attributed to the improved prediction of the ab initio method SVMpep by introducing intrinsic disorder and the consensus prediction by combining three complementary methods. A web server that implements the proposed methods is freely available at http://yanglab.nankai.edu.cn/PepBind/ .

PubMed Disclaimer

Publication types

LinkOut - more resources