Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2018 Jun 12;9(3):e01001-18.
doi: 10.1128/mBio.01001-18.

A Single-Cell Approach to the Elusive Latent Human Cytomegalovirus Transcriptome

Affiliations
Comment

A Single-Cell Approach to the Elusive Latent Human Cytomegalovirus Transcriptome

Felicia Goodrum et al. mBio. .

Abstract

Herpesvirus latency has been difficult to understand molecularly due to low levels of viral genomes and gene expression. In the case of the betaherpesvirus human cytomegalovirus (HCMV), this is further complicated by the heterogeneity inherent to hematopoietic subpopulations harboring genomes and, as a consequence, the various patterns of infection that simultaneously exist in a host, ranging from latent to lytic. Single-cell RNA sequencing (scRNA-seq) provides tremendous potential in measuring the gene expression profiles of heterogeneous cell populations for a wide range of applications, including in studies of cancer, immunology, and infectious disease. A recent study by Shnayder et al. (mBio 9:e00013-18, 2018, https://doi.org/10.1128/mBio.00013-18) utilized scRNA-seq to define transcriptomal characteristics of HCMV latency. They conclude that latency-associated gene expression is similar to the late lytic viral program but at lower levels of expression. The study highlights the numerous challenges, from the definition of latency to the analysis of scRNA-seq, that exist in defining a latent transcriptome.

Keywords: MARS-Seq; cytomegalovirus; herpesviruses; scRNA-seq; transcriptome.

PubMed Disclaimer

Comment on

References

    1. Cheng S, Caviness K, Buehler J, Smithey M, Nikolich-Žugich J, Goodrum F. 2017. Transcriptome-wide characterization of human cytomegalovirus in natural infection and experimental latency. Proc Natl Acad Sci U S A 114:E10586–E10595. doi:10.1073/pnas.1710522114. - DOI - PMC - PubMed
    1. Rossetto CC, Tarrant-Elorza M, Pari GS. 2013. Cis and trans acting factors involved in human cytomegalovirus experimental and natural latent infection of CD14 (+) monocytes and CD34 (+) cells. PLoS Pathog 9:e1003366. doi:10.1371/journal.ppat.1003366. - DOI - PMC - PubMed
    1. Goodrum F, Jordan CT, Terhune SS, High K, Shenk T. 2004. Differential outcomes of human cytomegalovirus infection in primitive hematopoietic cell subpopulations. Blood 104:687–695. doi:10.1182/blood-2003-12-4344. - DOI - PubMed
    1. Cheung AK, Abendroth A, Cunningham AL, Slobedman B. 2006. Viral gene expression during the establishment of human cytomegalovirus latent infection in myeloid progenitor cells. Blood 108:3691–3699. doi:10.1182/blood-2005-12-026682. - DOI - PubMed
    1. Goodrum FD, Jordan CT, High K, Shenk T. 2002. Human cytomegalovirus gene expression during infection of primary hematopoietic progenitor cells: a model for latency. Proc Natl Acad Sci U S A 99:16255–16260. doi:10.1073/pnas.252630899. - DOI - PMC - PubMed

LinkOut - more resources