Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul;16(1):328-332.
doi: 10.3892/etm.2018.6169. Epub 2018 May 16.

Differential network as an indicator of osteoporosis with network entropy

Affiliations

Differential network as an indicator of osteoporosis with network entropy

Lili Ma et al. Exp Ther Med. 2018 Jul.

Abstract

Osteoporosis is a common skeletal disorder characterized by a decrease in bone mass and density. The peak bone mass (PBM) is a significant determinant of osteoporosis. To gain insights into the indicating effect of PBM to osteoporosis, this study focused on characterizing the PBM networks and identifying key genes. One biological data set with 12 monocyte low PBM samples and 11 high PBM samples was derived to construct protein-protein interaction networks (PPINs). Based on clique-merging, module-identification algorithm was used to identify modules from PPINs. The systematic calculation and comparison were performed to test whether the network entropy can discriminate the low PBM network from high PBM network. We constructed 32 destination networks with 66 modules divided from monocyte low and high PBM networks. Among them, network 11 was the only significantly differential one (P<0.05) with 8 nodes and 28 edges. All genes belonged to precursors of osteoclasts, which were related to calcium transport as well as blood monocytes. In conclusion, based on the entropy in PBM PPINs, the differential network appears to be a novel therapeutic indicator for osteoporosis during the bone monocyte progression; these findings are helpful in disclosing the pathogenetic mechanisms of osteoporosis.

Keywords: network entropy; osteoporosis; peak bone mass; protein-protein interaction networks.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
The significantly differential network divided from PBM PPI. The differential PBM network with 8 nodes and 28 edges, a total of 8 genes, PSMA2, PSMB1, PSMC1, PSMC4, PSMD5, PSMD7, PSMD8 and PSMD11, were identified in both monocyte low and high PBM networks. They belonged to precursors of macropain, which were related to calcium transport as well as blood monocytes. PBM, peak bone mass; PPI, protein-protein interaction.
Figure 2.
Figure 2.
Bone density of right femur and third lumbar vertebra (*P<0.05).
Figure 3.
Figure 3.
The expression of target genes in network. OVX and SHAM represent ovariectomized and sham operated group, respectively (*P<0.05).

Similar articles

Cited by

References

    1. Czerwiński E, Badurski JE, Marcinowska-Suchowierska E, Osieleniec J. Current understanding of osteoporosis according to the position of the World Health Organization (WHO) and International Osteoporosis Foundation. Ortop Traumatol Rehabil. 2007;9:337–356. - PubMed
    1. Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V, Weaver C. Peak bone mass. Osteoporos Int. 2000;11:985–1009. doi: 10.1007/s001980070020. - DOI - PubMed
    1. Lei SF, Wu S, Li LM, Deng FY, Xiao SM, Jiang C, Chen Y, Jiang H, Yang F, Tan LJ, et al. An in vivo genome wide gene expression study of circulating monocytes suggested GBP1, STAT1 and CXCL10 as novel risk genes for the differentiation of peak bone mass. Bone. 2009;44:1010–1014. doi: 10.1016/j.bone.2008.05.016. - DOI - PubMed
    1. Bonjour JP, Chevalley T, Ferrari S, Rizzoli R. The importance and relevance of peak bone mass in the prevalence of osteoporosis. Salud Publica Mex. 2009;51(Suppl 1):S5–S17. doi: 10.1590/S0036-36342009000700004. - DOI - PubMed
    1. Udagawa N, Takahashi N, Akatsu T, Tanaka H, Sasaki T, Nishihara T, Koga T, Martin TJ, Suda T. Origin of osteoclasts: Mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci USA. 1990;87:7260–7264. doi: 10.1073/pnas.87.18.7260. - DOI - PMC - PubMed