Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Jun 17;36(24):2347-58.
doi: 10.1016/0024-3205(85)90325-x.

Caffeine tolerance: behavioral, electrophysiological and neurochemical evidence

Caffeine tolerance: behavioral, electrophysiological and neurochemical evidence

D T Chou et al. Life Sci. .

Abstract

The development of tolerance to the stimulatory action of caffeine upon mesencephalic reticular neurons and upon spontaneous locomotor activity was evaluated in rats after two weeks of chronic exposure to low doses of caffeine (5-10 mg/kg/day via their drinking water). These doses are achievable through dietary intake of caffeine-containing beverages in man. Concomitant measurement of [3H]-CHA binding in the mesencephalic reticular formation was also carried out in order to explore the neurochemical basis of the development of tolerance. Caffeine, 2.5 mg/kg i.v., markedly increased the firing rate of reticular neurons in caffeine naive rats but failed to modify the neuronal activity in a group exposed chronically to low doses of caffeine. In addition, in spontaneous locomotor activity studies, our data show a distinct shift to the right of the caffeine dose-response curve in caffeine pretreated rats. These results clearly indicate that tolerance develops to the stimulatory action of caffeine upon the reticular formation at the single neuronal activity level as well as upon spontaneous locomotor activity. Furthermore, in chronically caffeine exposed rats, an increase in the number of binding sites for [3H]-CHA was observed in reticular formation membranes without any change in receptor affinity. We propose, therefore, that up-regulation of adenosine receptors may underlie the development of tolerance to the CNS effects of caffeine.

PubMed Disclaimer

Publication types

LinkOut - more resources