Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jan 1;7(1):628-641.
doi: 10.1039/c5sc03114a. Epub 2015 Oct 20.

Magnesium-catalysed nitrile hydroboration

Affiliations

Magnesium-catalysed nitrile hydroboration

Catherine Weetman et al. Chem Sci. .

Abstract

A β-diketiminato n-butylmagnesium complex is presented as a selective precatalyst for the reductive hydroboration of organic nitriles with pinacolborane (HBpin). Stoichiometric reactivity studies indicate that catalytic turnover ensues through the generation of magnesium aldimido, aldimidoborate and borylamido intermediates, which are formed in a sequence of intramolecular nitrile insertion and inter- and intramolecular B-H metathesis events. Kinetic studies highlight variations in mechanism for the catalytic dihydroboration of alkyl nitriles, aryl nitriles bearing electron withdrawing (Ar(EWG)CN) and aryl nitriles bearing electron donating (Ar(EDG)CN) substitution patterns. Kinetic isotope effects (KIEs) for catalysis performed with DBpin indicate that B-H bond breaking and C-H bond forming reactions are involved in the rate determining processes during the dihydroboration of alkyl nitriles and Ar(EDG)CN substrates, which display divergent first and second order rate dependences on [HBpin] respectively. In contrast, the hydroboration of Ar(EWG)CN substrates provides no KIE and HBpin is not implicated in the rate determining process during catalysis. Irrespective of these differences, a common mechanism is proposed in which the rate determining steps are deduced to vary through the establishment of several pre-equilibria, the relative positions of which are determined by the respective stabilities of the dimeric and monomeric magnesium aldimide and magnesium aldimidoborate intermediates as a result of adjustments to the basicity of the nitrile substrate. More generally, these observations indicate that homogeneous processes performed under heavier alkaline earth catalysis are likely to demonstrate previously unappreciated mechanistic diversity.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1
Scheme 2
Scheme 2
Scheme 3
Scheme 3. Prototype mechanism for dihydroboration of nitriles.
Fig. 1
Fig. 1. ORTEP representation of the structure of compound 1 (30% probability ellipsoids). Hydrogen atoms, except for those attached to the C1 methylene carbon centre, are omitted for clarity.
Fig. 2
Fig. 2. ORTEP representations of (a) compound 2 and (b) compound 3 (30% probability ellipsoids). Hydrogen atoms, except for those attached to the C(30) and, for 3, the C(38) methine carbon centres, and iso-propyl groups are omitted for clarity. Symmetry transformations used to generate equivalent (′) atoms in (b) –x + 1, –y + 1, –z + 1.
Fig. 3
Fig. 3. ORTEP representation of compound 4 (30% probability ellipsoids). Hydrogen atoms apart from those attached to B1 and C30 and iso-propyl groups are omitted for clarity.
Fig. 4
Fig. 4. ORTEP representation of compound 5 (30% probability ellipsoids). Iso-propyl groups and hydrogen atoms other than those attached to B1 and C80 have been removed for clarity.
Fig. 5
Fig. 5. (a) Pseudo-zero order kinetics of propionitrile dihydroboration with varying [V]; (b) propionitrile dihydroboration reaction rate as a function of [V].
Fig. 6
Fig. 6. Hammett plot for dihydroboration of variously substituted aryl nitriles catalysed by V.
Scheme 4
Scheme 4
Scheme 5
Scheme 5
Scheme 6
Scheme 6
Scheme 7
Scheme 7
Scheme 8
Scheme 8

References

    1. The Handbook of Homogeneous Hydrogenation, ed. J. G. de Vries and C. J. Elsevier, Wiley-VCH, Weinheim, 2007.
    2. Oro L. A., Carmona D. and Fraile J. M., in Metal-Catalysis in Industrial Organic Processes, ed. G. P. Chiusoli and P. M. Maitlis, RSC Publishing, London, 2006; pp. 79–113.
    1. Saavedra J. Z., Resendez A., Rovira A., Eagon S., Haddenham D., Singaram B. J. Org. Chem. 2012;77:221. - PubMed
    2. Hegedús L., Máthe T. Appl. Catal., A. 2005;296:209.
    3. Hegedús L., Máthe T., Kárpáti T. Appl. Catal., A. 2008;349:40.
    4. Maki S., Okawa M., Makii T., Hirano T., Niwa H. Tetrahedron Lett. 2003;44:3717.
    5. Bawane S. P., Sawant S. B. Chem. Eng. J. 2004;103:13.
    6. de Bellefon C., Fouilloux P. Catal. Rev.: Sci. Eng. 1994;36:459.
    1. Grey R. A., Pez G. P., Wallo A. J. Am. Chem. Soc. 1981;103:7536.
    2. Suarez T., Fontal B. J. Mol. Catal. 1988;45:335.
    3. Joshi A. M., MacFarlane K. S., James B. R. and Frediani P., in Progress in Catalysis, ed. K. J. Smith and E. C. Sanford, Elsevier, New York, 1992, pp. 143–146.
    4. Mukherjee D. K., Palit B. K., Saha C. R. J. Mol. Catal. 1994;88:57.
    5. Yoshida T., Okano T., Otsuka S. J. Chem. Soc., Chem. Commun. 1979;19:870.
    6. Chin C. S., Lee B. Catal. Today. 1992;14:135.
    7. Takemoto S., Kawamura H., Yamada Y., Okada T., Ono A., Yoshikawa E., Mizobe Y., Hidai M. Organometallics. 2002;21:3897.
    8. Vilches-Herrera M., Werkmeister S., Junge K., Börner A., Beller M. Catal. Sci. Technol. 2014;4:629.
    1. For a recent review, see:

    2. Werkmeister S., Junge K., Beller M. Org. Process Res. Dev. 2014;18:289.
    3. Enthaler S., Addis D., Junge K., Erre G., Beller M. Chem.–Eur. J. 2008;14:9491. - PubMed
    4. Enthaler S., Junge K., Addis D., Erre G., Beller M. ChemSusChem. 2008;1:1006. - PubMed
    5. Reguillo R., Grellier M., Vautravers N., Vendier L., Sabo-Etienne S. J. Am. Chem. Soc. 2010;132:7854. - PubMed
    6. Rajesh K., Dudle B., Blaque O., Berke H. Adv. Synth. Catal. 2011;353:1479.
    7. Gunanathan C., Hoelscher M., Leitner W. Eur. J. Inorg. Chem. 2011:3381.
    8. Cabrita I., Fernandes A. C. Tetrahedron. 2011;67:8183.
    9. Miao X., Bidange J., Dixneuf P. H., Fischmeister C., Bruneau C., Dubois J.-L., Couturier J.-L. ChemCatChem. 2012;4:1911. - PubMed
    10. Werkmeister S., Bornschein C., Junge K., Beller M. Chem.–Eur. J. 2013;19:4437. - PubMed
    11. Lu Z., Williams T. J. Chem. Commun. 2014;50:5391. - PMC - PubMed
    12. Werkmeister S., Junge K., Wendt B., Spannenberg A., Jiao H., Bornschein C., Beller M. Chem.–Eur. J. 2014;20:4227. - PubMed
    1. Seyden-Penne J., Reductions by Alumino and Borohydrides in Organic Synthesis, Wiley-VCH, New York, 2nd edn, 1997.