Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Sep;20(9):3224-3245.
doi: 10.1111/1462-2920.14291. Epub 2018 Aug 20.

Contribution of peroxisomal docking machinery to mycotoxin biosynthesis, pathogenicity and pexophagy in the plant pathogenic fungus Fusarium graminearum

Affiliations

Contribution of peroxisomal docking machinery to mycotoxin biosynthesis, pathogenicity and pexophagy in the plant pathogenic fungus Fusarium graminearum

Yun Chen et al. Environ Microbiol. 2018 Sep.

Abstract

Peroxisomal proliferation is highly stimulated during the biosynthesis of mycotoxins and plant infection by Fusarium graminearum. Currently, the functions of the peroxisome in these cellular processes are poorly understood. In this study, we applied genetic, cell biological and biochemical analyses to investigate the functions of the peroxisomes. We constructed targeted deletion of docking machinery components, including FgPex13, FgPex14 and the filamentous fungal specific peroxin FgPex33. Our results indicated that peroxisome dysfunction resulted in a shortage of acetyl-CoA, the precursor of trichothecene biosynthesis, and subsequently decreased deoxynivalenol (DON) production. Deletion mutants of ΔFgPex13, ΔFgPex14 or ΔFgPex33 showed an increased accumulation of endogenous reactive oxygen species (ROS) and reduced phosphorylation of MAP (Mitogen-Activated Protein) kinase FgMgv1. In addition, mutants of the docking peroxin exhibited increased sensitivity toward host oxidative bursts and cell wall integrity stress agents and reduced virulence on host plants. More importantly, we found for the first time that FgPex14 is required for pexophagy in F. graminearum. Overall, our study suggests that peroxisomes play critical roles in DON biosynthesis and virulence in F. graminearum.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources