Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Oct 7:454:253-267.
doi: 10.1016/j.jtbi.2018.06.014. Epub 2018 Jun 15.

What does not kill a tumour may make it stronger: In silico insights into chemotherapeutic drug resistance

Affiliations

What does not kill a tumour may make it stronger: In silico insights into chemotherapeutic drug resistance

Sara Hamis et al. J Theor Biol. .

Abstract

Tumour recurrence post chemotherapy is an established clinical problem and many cancer types are often observed to be increasingly drug resistant subsequent to chemotherapy treatments. Drug resistance in cancer is a multipart phenomenon which can be derived from several origins and in many cases it has been observed that cancer cells have the ability to possess, acquire and communicate drug resistant traits. Here, an in silico framework is developed in order to study drug resistance and drug response in cancer cell populations exhibiting various drug resistant features. The framework is based on an on-lattice hybrid multiscale mathematical model and is equipped to simulate multiple mechanisms on different scales that contribute towards chemotherapeutic drug resistance in cancer. This study demonstrates how drug resistant tumour features may depend on the interplay amongst intracellular, extracelluar and intercellular factors. On a cellular level, drug resistant cell phenotypes are here derived from inheritance or mutations that are spontaneous, drug-induced or communicated via exosomes. Furthermore intratumoural heterogeneity and spatio-temporal drug dynamics heavily influences drug delivery and the development of drug resistant cancer cell subpopulations. Chemotherapy treatment strategies are here optimised for various in silico tumour scenarios and treatment objectives. We demonstrate that optimal chemotherapy treatment strategies drastically depend on which drug resistant mechanisms are activated, and that furthermore suboptimal chemotherapy administration may promote drug resistance.

Keywords: Cancer; Cellular automaton; Drug response; Mathematical oncology; Multiscale model.

PubMed Disclaimer

Publication types

LinkOut - more resources