Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Apr-Jun;10(2):47-57.
doi: 10.4103/jgid.jgid_145_17.

Early Results of Fecal Microbial Transplantation Protocol Implementation at a Community-based University Hospital

Affiliations

Early Results of Fecal Microbial Transplantation Protocol Implementation at a Community-based University Hospital

Rodrigo Duarte-Chavez et al. J Glob Infect Dis. 2018 Apr-Jun.

Abstract

Introduction: Clostridium difficile (CD) is a serious and increasingly prevalent healthcare-associated infection. The pathogenesis of CD infection (CDI) involves the acquisition of CD with a concurrent disruption of the native gut flora. Antibiotics are a major risk although other contributing factors have also been identified. Clinical management combines discontinuation of the offending antibiotic, initiation of CD-specific antibiotic therapy, probiotic agent use, fecal microbiota transplantation (FMT), and surgery as the "last resort" option. The aim of this study is to review short-term clinical results following the implementation of FMT protocol (FMTP) at our community-based university hospital.

Methods: After obtaining Institutional Review Board and Infection Control Committee approvals, we implemented an institution-wide FMTP for patients diagnosed with CDI. Prospective tracking of all patients receiving FMT between July 1, 2015, and February 1, 2017, was conducted using REDCap™ electronic data capture system. According to the FMTP, indications for FMT included (a) three or more CDI recurrences, (b) two or more hospital admissions with severe CDI, or (c) first episode of complicated CDI (CCDI). Risk factors for initial infection and for treatment failure were assessed. Patients were followed for at least 3 months to monitor for cure/failure, relapse, and side effects. Frozen 250 mL FMT samples were acquired from OpenBiome (Somerville, MA, USA). After 4 h of thawing, the liquid suspension was applied using colonoscopy, beginning with terminal ileum and proceeding distally toward mid-transverse colon. Monitored clinical parameters included disease severity (Hines VA CDI Severity Score or HVCSS), concomitant medications, number of FMT treatments, non-FMT therapies, cure rates, and mortality. Descriptive statistics were utilized to outline the study results.

Results: A total of 35 patients (mean age 58.5 years, 69% female) were analyzed, with FMT-attributable primary cure achieved in 30/35 (86%) cases. Within this subgroup, 2/30 (6.7%) patients recurred and were subsequently cured with long-term oral vancomycin. Among five primary FMT failures (14% total sample), 3 (60%) achieved medical cure with long-term oral vancomycin therapy and 2 (40%) required colectomy. For the seven patients who either failed FMT or recurred, long-term vancomycin therapy was curative in all but two cases. For patients with severe CDI (HVCSS ≥3), primary and overall cure rates were 6/10 (60%) and 8/10 (80%), respectively. Patients with CCDI (n = 4) had higher HVCSS (4 vs. 3) and a mortality of 25%. Characteristics of patients who failed initial FMT included older age (70 vs. 57 years), female sex (80% vs. 67%), severe CDI (80% vs. 13%), and active opioid use during the initial infection (60% vs. 37%) and at the time of FMT (60% vs. 27%). The most commonly reported side effect of FMT was loose stools.

Conclusions: This pilot study supports the efficacy and safety of FMT administration for CDI in the setting of a community-based university hospital. Following FMTP implementation, primary (86%) and overall (94%) nonsurgical cure rates were similar to those reported in other studies. The potential role of opioids as a modulator of CDI warrants further clinical investigation.

Keywords: Clinical protocol implementation; Clostridium difficile; Clostridium difficile infection; fecal microbiota transplantation; infectious colitis.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts of interest.

Figures

Figure 1
Figure 1
Colonoscopic image showing the presence of pseudomembranes characteristic of Clostridium difficile colitis
Figure 2
Figure 2
Appearance of pancolitis associated with Clostridium difficile infection on abdominal computed tomography scan. Note the presence of diffuse inflammation in ascending, descending and sigmoid colon (arrows)
Figure 3
Figure 3
Breakdown of pre-Clostridium difficile infection antibiotic use among study patients
Figure 4
Figure 4
Each treatment stage for the study cohort, including primary modalities employed and the associated cure/failure incidences. CDI = Clostridium difficile infection; FMT = Fecal microbiota transplant
Figure 5
Figure 5
Categorical breakdown of reported side effects among patients treated with fecal microbiota transplantation. Most common complaints included loose stools and abdominal pain
Figure 6
Figure 6
The distribution of severe complicated Clostridium difficile infection cases. The Hines VA Clostridium difficile infection Severity Score was higher for cases requiring colectomy (5.5) than for cases where complicated Clostridium difficile infection resolved after fecal microbiota transplantation-based management

References

    1. Chapin KC, Dickenson RA, Wu F, Andrea SB. Comparison of five assays for detection of Clostridium difficile toxin. J Mol Diagn. 2011;13:395–400. - PMC - PubMed
    1. Bartlett JG, Chang TW, Gurwith M, Gorbach SL, Onderdonk AB. Antibiotic-associated pseudomembranous colitis due to toxin-producing clostridia. N Engl J Med. 1978;298:531–4. - PubMed
    1. McFarland LV, Mulligan ME, Kwok RY, Stamm WE. Nosocomial acquisition of Clostridium difficile infection. N Engl J Med. 1989;320:204–10. - PubMed
    1. Borgia G, Maraolo AE, Foggia M, Buonomo AR, Gentile I. Fecal microbiota transplantation for Clostridium difficile infection: Back to the future. Expert Opin Biol Ther. 2015;15:1001–14. - PubMed
    1. Keller JJ, Kuijper EJ. Treatment of recurrent and severe Clostridium difficile infection. Annu Rev Med. 2015;66:373–86. - PubMed