Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Feb 1;7(2):1383-1387.
doi: 10.1039/c5sc03903g. Epub 2015 Nov 11.

β-Arylation of oxime ethers using diaryliodonium salts through activation of inert C(sp)-H bonds using a palladium catalyst

Affiliations

β-Arylation of oxime ethers using diaryliodonium salts through activation of inert C(sp)-H bonds using a palladium catalyst

Jing Peng et al. Chem Sci. .

Abstract

An efficient method of selective β-arylation of oxime ethers was realized by using a palladium catalyst with diaryliodonium salts as the key arylation reagents. The reaction proceeded smoothly through the activation of inert C(sp3)-H bonds to give corresponding ketones and aldehydes. This convenient procedure can be successfully applied to construct new C(sp3)-C(sp2) bonds on a number of complex molecules derived from natural products and thus serves as a practical synthetic tool for direct late-stage C(sp3)-H functionalization.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. Pd-catalyzed β-arylation reaction of oxime ethers via C(sp3)–H bond activation.
Scheme 2
Scheme 2. Scope of diaryliodonium salts to form desired β-arylated products.
Scheme 3
Scheme 3. β-Arylation of selected oxime ethers with 2d.
Scheme 4
Scheme 4. The activation of methylene C–H bonds to form C–C bonds.
Scheme 5
Scheme 5. Modification of complex molecules derived from natural products (see ESI for experimental details).
Fig. 1
Fig. 1. A (left), Crystal structure of compound 3kg; B (right), crystal structure of palladation intermediate 6 (see ESI for detailed date of the crystals).
Scheme 6
Scheme 6. Hydrogenation of 3aa to generate 3aa-H.
Scheme 7
Scheme 7. Preparation of the palladation intermediate and its reaction with 2d.
Scheme 8
Scheme 8. A plausible mechanism.

References

    1. Godula K., Sames D. Science. 2006;312:67. - PubMed
    2. Lyons T. W., Sanford M. S. Chem. Rev. 2010;110:1147. - PMC - PubMed
    3. Baudoin O. Chem. Soc. Rev. 2011;40:4902. - PubMed
    4. Yamaguchi J., Yamaguchi A. D., Itami K. Angew. Chem., Int. Ed. 2012;51:8960. - PubMed
    5. Arockiam P. B., Bruneau C., Dixneuf P. H. Chem. Rev. 2012;112:5879. - PubMed
    6. Rouquet G., Chatani N. Angew. Chem., Int. Ed. 2013;52:11726. - PubMed
    1. For selective examples, see:

    2. Culkin D. A., Hartwig J. F. Acc. Chem. Res. 2003;36:234. - PubMed
    3. Davies H. M. L. Angew. Chem., Int. Ed. 2006;45:6422. - PubMed
    4. Shi B.-F., Maugel N., Zhang Y.-H., Yu J.-Q. Angew. Chem., Int. Ed. 2008;47:4882. - PubMed
    5. Godula K., Sames D. Science. 2009;312:67. - PubMed
    6. Phipps R. J., Gaunt M. J. Science. 2009;323:1593. - PubMed
    7. Doyle M. P., Duffy R., Ratnikov M., Zhou L. Chem. Rev. 2010;110:704. - PubMed
    8. Sun C.-L., Li B.-J., Shi Z.-J. Chem. Rev. 2011;111:1293. - PubMed
    9. Li H., Li B.-J., Shi Z.-J. Catal. Sci. Technol. 2011;1:191.
    10. Shin K., Park S.-W., Chang S. J. Am. Chem. Soc. 2015;137:8584. - PubMed
    11. Stokes B. J., Liao L.-Y., Andrade A. M., Wang Q.-F., Sigman M. S. Org. Lett. 2014;16:4666. - PMC - PubMed
    12. Mei T.-S., Harshkumar H. P., Sigman M. S. Nature. 2014;508:340. - PMC - PubMed
    13. Werner E. W., Mei T.-S., Burckle A. J., Sigman M. S. Science. 2012;338:1455. - PMC - PubMed
    14. Cahard E., Male H. P. J., Tissot M., Gaunt M. J. J. Am. Chem. Soc. 2015;137:7986. - PMC - PubMed
    1. Allen A. E., MacMillan D. W. C. J. Am. Chem. Soc. 2011;133:4260. - PMC - PubMed
    2. Takeda Y., Ikeda Y., Kuroda A., Tanaka S., Minakata S. J. Am. Chem. Soc. 2014;136:8544. - PubMed
    3. Pirnot M. T., Rankic D. A., Martin D. B. C., MacMillan D. W. C. Science. 2013;339:1593. - PMC - PubMed
    1. Jørgensen M., Lee S., Liu X.-X., Wolkowski J. P., Hartwig J. F. J. Am. Chem. Soc. 2002;124:12557. - PubMed
    2. Zaitsev V. G., Shabashov D., Daugulis O. J. Am. Chem. Soc. 2005;127:13154. - PubMed
    3. Feng Y., Wang Y., Landgraf B., Liu S., Chen G. Org. Lett. 2010;12:3414. - PubMed
    4. Renaudat A., Jean-Gerard L., Jazzar R., Kefalidis C. E., Clot E., Baudoin O. Angew. Chem., Int. Ed. 2010;49:7261. - PubMed
    5. Wasa M., Engle K. M., Lin D. W., Yoo E. J., Yu J.-Q. J. Am. Chem. Soc. 2011;133:19598. - PMC - PubMed
    6. Aspin S., Goutierre A. S., Larini P., Jazzar R., Baudoin O. Angew. Chem., Int. Ed. 2012;51:10808. - PubMed
    7. Shang R., Ilies L., Matsumoto A., Nakamura E. J. J. Am. Chem. Soc. 2013;135:6030. - PubMed
    8. Pan F., Shen P.-X., Zhang L.-S., Wang X., Shi Z.-J. Org. Lett. 2013;15:4758. - PubMed
    1. Reddy B. V. S., Reddy L. R., Corey E. J. Org. Lett. 2006;8:3391. - PubMed
    2. Rodriguez N., Romero-Revilla J. A., Fernandez-Ibanez M. A., Carretero J. C. Chem. Sci. 2013;4:175.
    3. Chan K. S. L., Wasa M., Chu L., Laforteza B. N., Miura M., Yu J.-Q. Nat. Chem. 2014;6:146. - PMC - PubMed
    4. Chan K. S. L., Fu H.-Y., Yu J.-Q. J. Am. Chem. Soc. 2015;137:2042. - PMC - PubMed
    5. Millet A., Dailler D., Larini P., Baoudoin O. Angew. Chem., Int. Ed. 2014;53:2678. - PubMed

LinkOut - more resources