Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Mar 1;7(3):2239-2245.
doi: 10.1039/c5sc04263a. Epub 2015 Dec 8.

Switchable π-electronic network of bis(α-oligothienyl)-substituted hexaphyrins between helical versus rectangular circuit

Affiliations

Switchable π-electronic network of bis(α-oligothienyl)-substituted hexaphyrins between helical versus rectangular circuit

Juwon Oh et al. Chem Sci. .

Abstract

The switching phenomena of conformation with π-electronic network through deprotonation-protonation processes were investigated by employing a series of 5,20-bis(α-oligothienyl) substituted hexaphyrins(1.1.1.1.1.1). They showed significant changes in the absorption and emission spectra with deprotonation, and returned to the initial state with protonation. Through NMR measurements and single crystal X-ray diffraction analysis, we found that the 5,20-bis(α-oligothienyl) substituted hexaphyrins, which possess acyclic, helical electronic networks involving oligothienyl chains in dumbbell conformations (type-I) in a neutral form, underwent effective deprotonation upon treatment with tetrabutylammonium fluoride (TBAF) to generate the corresponding dianions, which display cyclic electronic networks with enhanced aromaticity in rectangular conformations (type-II). Our quantum calculation results provide an unambiguous description for the switchable conformation and π-conjugation, which revealed that a deprotonation-induced enhanced aromatic conjugation pathway is involved in the switchable π-electronic network.

PubMed Disclaimer

Figures

Chart 1
Chart 1. Molecular structures of type-I and type-II [26]hexaphryins and the series of 5,20-bis(α-oligothienyl) substituted [26]hexaphyrins, T1–T4.
Scheme 1
Scheme 1. Deprotonation of [26]hexaphyrins (a): 1 and (b): Tn.
Fig. 1
Fig. 1. Steady-state absorption spectra of T1–T4 in CH2Cl2 with and without TBAF.
Fig. 2
Fig. 2. 1H NMR spectra of T2 in THF-d8 in the (a) absence of TBAF and (b) presence of an excess amount of TBAF. * and # represent peaks due to residual solvent and the tetrabutylammonium cation, respectively.
Fig. 3
Fig. 3. Femtosecond time-resolved transient absorption spectra and decay profiles (inset) of T12––T42– in CH2Cl2.
Fig. 4
Fig. 4. Optimized structures of (a) T2 and (b) T22– from the top and side view and energy level diagrams with molecular orbitals of (c) T2 and (d) T22–. meso-Pentafluorophenyl groups are omitted for clarity in the side view figures.
Scheme 2
Scheme 2. Switchable conformation and π-electronic network of Tn by deprotonation–protonation.

References

    1. Shaik S., Shurki A., Danovich D., Hiberty P. C. Chem. Rev. 2001;101:1501. - PubMed
    2. Krygowshi T. M., Szatylowicz H., Stasyuk O. A., Dominikowska J., Palusiak M. Chem. Rev. 2014;114:6383. - PubMed
    3. Sung Y. M., Yoon M.-C., Lim J. M., Rath H., Naoda K., Osuka A., Kim D. Nat. Chem. 2015;7:418. - PubMed
    1. Chandrashekar T. K., Venkatraman S. Acc. Chem. Res. 2003;36:676. - PubMed
    2. Sessler J. L., Seidel D. Angew. Chem., Int. Ed. 2003;42:5134. - PubMed
    3. Stępień M., Sprutta N., Latos-Grażyński L. Angew. Chem., Int. Ed. 2011;50:4288. - PubMed
    4. Saito S., Osuka A. Angew. Chem., Int. Ed. 2011;50:4342. - PubMed
    1. Stępień M., Latos-Grażyński L., Sprutta N., Chwalisz P., Szterenberg L. Angew. Chem., Int. Ed. 2007;46:7869. - PubMed
    2. Tanaka Y., Saito S., Mori S., Aratani N., Shinokubo H., Shibata N., Higuchi Y., Yoon Z. S., Kim K. S., Noh S. B., Park J. K., Kim D., Osuka A. Angew. Chem., Int. Ed. 2008;47:681. - PubMed
    3. Sankar J., Mori S., Saito S., Rath H., Suzuki M., Inokuma Y., Shinokubo H., Kim K. S., Yoon Z. S., Shin J.-Y., Lim J. M., Matsuzaki Y., Matsushita O., Muranaka A., Kobayashi N., Kim D., Osuka A. J. Am. Chem. Soc. 2008;130:13568. - PubMed
    4. Yoon Z. S., Osuka A., Kim D. Nat. Chem. 2009;1:113. - PubMed
    1. Pacholska-Dudziak E., Skonieczny J., Pawlicki M., Szterenberg L., Ciunik Z., Latos-Grażyński L. J. Am. Chem. Soc. 2008;130:6182. - PubMed
    2. Higashino T., Lim J. M., Miura Y., Saito S., Shin J.-Y., Kim D., Osuka A. Angew. Chem., Int. Ed. 2010;49:4950. - PubMed
    3. Higashino T., Lee B. S., Lim J. M., Kim D., Osuka A. Angew. Chem., Int. Ed. 2012;51:13105. - PubMed
    1. Koide T., Kashiwazaki G., Suzuki M., Furukawa K., Yoon M.-C., Cho S., Kim D., Osuka A. Angew. Chem., Int. Ed. 2008;47:9661. - PubMed
    2. Rath H., Tokuji S., Aratani N., Furukawa K., Lim J. M., Kim D., Shinokubo H., Osuka A. Angew. Chem., Int. Ed. 2010;49:1489. - PubMed
    3. Koide T., Furukawa K., Shinokubo H., Shin J.-Y., Kim K. S., Kim D., Osuka A. J. Am. Chem. Soc. 2010;132:7246. - PubMed
    4. Gopalakrishna T. Y., Reddy J. S., Anand V. G. Angew. Chem., Int. Ed. 2014;53:10984. - PubMed
    5. Tanaka Y., Yoneda T., Furukawa K., Koide T., Mori H., Tanaka T., Shinokubo H., Osuka A. Angew. Chem., Int. Ed. 2015;54:10908. - PubMed
    6. Hisamune Y., Nishimura K., Isakari K., Ishida M., Mori S., Karasawa S., Kato T., Lee S., Kim D., Furuta H. Angew. Chem., Int. Ed. 2015;54:7323. - PubMed