Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul 25:76:84-93.
doi: 10.1016/j.jbiomech.2018.05.044. Epub 2018 Jun 15.

Dependence of leukocyte capture on instantaneous pulsatile flow

Affiliations

Dependence of leukocyte capture on instantaneous pulsatile flow

Umberto Ciri et al. J Biomech. .

Abstract

Atherosclerosis, an artery disease, is currently the leading cause of death in the United States in both men and women. The first step in the development of atherosclerosis involves leukocyte adhesion to the arterial endothelium. It is broadly accepted that blood flow, more specifically wall shear stress (WSS), plays an important role in leukocyte capture and subsequent development of an atherosclerotic plaque. What is less known is how instantaneous WSS, which can vary by up to 5 Pa over one cardiac cycle, influences leukocyte capture. In this paper we use direct numerical simulations (DNS), performed using an in-house code, to illustrate that leukocyte capture is different whether as a function of instantaneous or time-averaged blood flow. Specifically, a stenotic plaque is modeled using a computational fluid dynamics (CFD) solver through fully three-dimensional Navier-Stokes equations and the immersed boundary method. Pulsatile triphasic inflow is used to simulate the cardiac cycle. The CFD is coupled with an agent-based leukocyte capture model to assess the impact of instantaneous hemodynamics on stenosis growth. The computed wall shear stress agrees well with the results obtained with a commercial software, as well as with theoretical results in the healthy region of the artery. The analysis emphasizes the importance of the instantaneous flow conditions in evaluating the leukocyte rate of capture. That is, the capture rate computed from mean flow field is generally underpredicted compared to the actual rate of capture. Thus, in order to obtain a reliable estimate, the flow unsteadiness during a cardiac cycle should be taken into account.

Keywords: Direct numerical simulation; Hemodynamics; Instantaneous flow; Leukocyte capture; Time-averaged flow.

PubMed Disclaimer

Conflict of interest statement

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1:
Figure 1:
Geometry of the stenoses used in the simulations: (a) cross-section along the artery axis for the axisymmetric geometry. The color shades denote the different stenosis heights h: formula image h = 0.1D, formula image h = 0.2D, formula image h = 0.3D. (b) Visualization of the three-dimensional stenosis in the case h = 0.2D. Only half of the circular wall is shown. The other half is smooth.
Figure 2:
Figure 2:
Flow field during a cardiac cycle: (a) cardiac cycle: formula image instantaneous bulk velocity; formula image mean bulk velocity. (b) Mean flow field averaged over a cardiac cycle. (c)–(f) Instantaneous flow fields: (c) t/T = 6/32 formula image, (d) t/T = 14/32 formula image, (e) t/T = 18/32 formula image, (f) t/T = 30/32 formula image. The scales of the axes in the figures are different to show the details of the flow past the stenosis.
Figure 3:
Figure 3:
Velocity profiles at 1.615 mm (x/D ≈ 0.55) upstream the MLA (ad), at the MLA (eh), and 1.615 mm downstream the MLA (il) at different instants during the cardiac cycle: ■ t/T = 0; • t/T = 1/4; ▴ t/T = 1/2; ▾ t/T = 3/4. Line represents the COMSOL simulation; symbols represent our in-house code results. The shaded region represents the shape and position of the plaque in the coronary.
Figure 4:
Figure 4:
Wall shear stress along the artery: (a)WSS¯, as a function of the streamwise coordinate: formula image DNS, formula image theoretical value for a circular pipe, according to eq. (13); (b) instantaneous wall shear stress: formula image t/T = 6/32, formula image t/T = 14/32,formula image t/T = 18/32, formula image t/T = 30/32; formula image time-averaged WSS¯ formula image; value of WSS above which leukocytes cannot adhere, WSS = 1.2 Pa. (c) root mean square value of WSS normalized by the healthy value WSS0.
Figure 5:
Figure 5:
Neutrophil capture R due to the WSS. (a) Capture rate throughout the cardiac cycle: formula image t/T = 6/32, formula image t/T = 14/32, formula image t/T = 18/32, formula image t/T = 30/32; formula image time-averaged R(WSS)¯. (b) Comparison between using rate of capture from the mean shear, R(WSS¯), (formula image) and the actual mean rate of capture, R(WSS)¯, (formula image).
Figure 6:
Figure 6:
Mean rate of capture R(WSS)¯ for different types of leukocytes: formula image neutrophil, formula image monocyte, formula image lymphocyte. (a) per unit concentration ρi (where i indicates the type of leukocytes); (b) actual capture rate.
Figure 7:
Figure 7:
Neutrophil capture rate for different stenosis heights: formula image mean rate from instantaneous shear stress R(WSS)¯; capture rate using time-averaged wall shear stress R(WSS¯) formula image. (a) h = 0.1D; (b) h = 0.2D (same as figure 5b); (c) h = 0.3D, the scale in the inset is changed to emphasize the details of the mean capture rate distributions, R(WSS)¯.
Figure 8:
Figure 8:
Neutrophil rate of capture for the three dimensional stenosis: (a, b) h = 0.1D; (c, d) h = 0.2D. In (a) and (c), the capture rate is computed averaging the instantaneous capture over the cardiac cycle, R(WSS)¯; in (b) and (d), capture is computed using the time-averaged shear stress, R(WSS¯).
Figure 9:
Figure 9:
Mean rate of neutrophil capture, R(WSS)¯, for different artery geometry: formula image straight pipe (no stenosis);formula image h/D = 0.1; formula image h/D = 0.2; formula image h/D = 0.3.

Similar articles

Cited by

References

    1. Armaly BF, Durst F, Pereira JCF, Schönung B, 1983. Experimental and theoretical investigation of backward-facing step flow. J. Fluid Mech 127, 473–496.
    1. Bailey AM, Thorne BC, Peirce SM, 2007. Multi-cell agent-based simulation of the microvasculature to study the dynamics of circulating inflammatory cell trafficking. Ann. Biomed. Eng 35(6), 916–936, 10.1007/s10439-007-9266-1. PubMed PMID: . - DOI - PubMed
    1. Barreiro O, Yanez-Mo M, Sala-Valdes M, Gutierrez-Lopez MD, Ovalle S, Higginbottom A, Monk PN, Cabanas C, Sanchez-Madrid F, 2005. Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation. Blood 105(7), 2852–2861. 10.1182/blood-2004-09-3606. PubMed PMID: . - DOI - PubMed
    1. Beratlis N, Balaras E, Parvinian B, Kiger K, 2005. A Numerical and Experimental Investigation of Transitional Pulsatile Flow in a Stenosed Channel. J. Biomech. Eng 127, 1147–1157. - PubMed
    1. Beratlis N, Balaras E, Kiger K, 2007. Direct numerical simulations of transitional pulsatile flow through a constriction. J. Fluid Mech. 587, 425–451.

Publication types