Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Aug;234(2):402-8.

Rapid down regulation of beta adrenergic receptors by combining antidepressant drugs with forced swim: a model of antidepressant-induced neural adaptation

  • PMID: 2991500

Rapid down regulation of beta adrenergic receptors by combining antidepressant drugs with forced swim: a model of antidepressant-induced neural adaptation

G E Duncan et al. J Pharmacol Exp Ther. 1985 Aug.

Abstract

The hypothesis that behavioral responses to antidepressant drugs in the forced swim test are related to a rapid neural adaptation produced by the combination of drug treatment and swim stress was explored. As a measure of adaptation, brain beta adrenergic receptors were assayed using [3H]dihydroalprenolol [( 3H]DHA) binding to brain membranes from rats that were processed in the forced swim test. The combination of swim stress and imipramine treatment antagonized immobility induced by forced swimming and resulted in a reduction in [3H] DHA binding to membranes from forebrain preparations which did not include the corpus striatum. Administration of antidepressant drugs from other chemical classes, including pargyline, iprindole and nomifensine, also reduced immobility induced by the forced swim and produced a reduction in [3H]DHA binding to forebrain membranes. In homogenates of the corpus striatum, [3H]DHA binding was not altered by swim stress combined with antidepressant drug treatment. Chlordiazepoxide was without an effect on immobility or beta receptor binding when combined with forced swim. Even though atropine and amphetamine exhibited a positive activity in the forced swim test, they did not reduce [3H]DHA binding. Therefore, by combining behavioral and neurochemical analysis of animals processed in the forced swim test, it may be possible to differentiate, with greater confidence, potential antidepressant drugs from "false positives." The present studies support the hypothesis that antidepressant drug action in the forced swim test involves a rapid neural adaptation as reflected by the down regulation of beta adrenergic receptors. Thus, this behavioral paradigm may serve as a model of adaptive mechanisms induced by antidepressant drugs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources