Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug;19(6):2598-2609.
doi: 10.1208/s12249-018-1090-4. Epub 2018 Jun 18.

Co-Processed Excipients for Dispersible Tablets-Part 1: Manufacturability

Affiliations

Co-Processed Excipients for Dispersible Tablets-Part 1: Manufacturability

Ben J Bowles et al. AAPS PharmSciTech. 2018 Aug.

Abstract

Co-processed excipients may enhance functionality and reduce drawbacks of traditional excipients for the manufacture of tablets on a commercial scale. The following study aimed to characterise a range of co-processed excipients that may prove suitable for dispersible tablet formulations prepared by direct compression. Co-processed excipients were lubricated and compressed into 10.5-mm convex tablets using a Phoenix compaction simulator. Compression profiles were generated by varying the compression force applied to the formulation and the prepared tablets were characterised for hardness, friability, disintegration and fineness of dispersion. Our data indicates that CombiLac, F-Melt type C and SmartEx QD100 were the top 3 most suitable out of 16 co-processed excipients under the conditions evaluated. They exhibited good flow properties (Carr's index ˂ 20), excellent tabletability (tensile strength > 3.0 MPa at 0.85 solid fraction), very low friability (< 1% after 15 min), rapid disintegration times (27-49 s) and produced dispersions of ideal fineness (< 250 μm). Other co-processed excipients (including F-Melt type M, Ludiflash, MicroceLac, Pharmaburst 500 and Avicel HFE-102) may be appropriate for dispersible tablets produced by direct compression providing the identified disintegration and dispersion risks were mitigated prior to commercialisation. This indicates that robust dispersible tablets which disintegrate rapidly could be manufactured from a range of co-processed excipients.

Keywords: co-processed excipients; compaction simulator; direct compression; dispersible tablets; tablet disintegration.

PubMed Disclaimer

LinkOut - more resources