Brain free magnesium homeostasis as a target for reducing cognitive aging
- PMID: 29920011
- Bookshelf ID: NBK507257
Brain free magnesium homeostasis as a target for reducing cognitive aging
Excerpt
In the general deterioration of physiological functions that takes place in aging, the prevalence of cognitive impairments, and particularly of those related to learning and memory, makes these deficits a major concern of public health. Although the exact nature of cellular and molecular substrates underlying learning and memory still remains an open issue for the neurobiologist, the current hypothesis assumes that it is determined by the capacity of brain neuronal networks to express short- and long-term changes in synaptic strength. Accordingly, the capacity of functional plasticity is impaired in the brain of aged memory-deficient animals. Short-term changes in synaptic transmission closely depend on transmitter release and neuronal excitability while long-term modifications are mainly related to the activation of the N-methyl-D-aspartate receptor (NMDA-R), a subtype of glutamate receptors. Because transmitter release, neuronal excitability and NMDA-R activation are modulated by magnesium (Mg2+), a change in brain Mg2+ homeostasis could affect synaptic strength and plasticity in neuronal networks and consequently could alter memory capacities. In addition, alteration of brain Mg2+ levels could be regarded as a possible mechanism contributing to cognitive aging. According to these postulates, long-term increase in Mg2+ levels facilitates the conversion of synapses to a plastic state while learning and memory capacities are enhanced in adult animals fed with a diet enriched in Mg2+-L-threonate, a treatment that significantly elevates brain Mg2+ levels. Because Mg2+-L-threonate also improves learning and memory in aged animals, the regulation of brain Mg2+ homeostasis may therefore be regarded as a relevant target for the development of new pharmacological strategies aimed at minimizing cognitive aging.
© 2011 The Authors.
Sections
Similar articles
-
Ageing, hippocampal synaptic activity and magnesium.Magnes Res. 2006 Sep;19(3):199-215. Magnes Res. 2006. PMID: 17172010 Review.
-
Targeting the NMDA receptor subunit NR2B for treating or preventing age-related memory decline.Expert Opin Ther Targets. 2014 Oct;18(10):1121-30. doi: 10.1517/14728222.2014.941286. Epub 2014 Aug 24. Expert Opin Ther Targets. 2014. PMID: 25152202 Review.
-
Plasticity, hippocampal place cells, and cognitive maps.Arch Neurol. 2001 Jun;58(6):874-81. doi: 10.1001/archneur.58.6.874. Arch Neurol. 2001. PMID: 11405801 Review.
-
Serine racemase as a prime target for age-related memory deficits.Eur J Neurosci. 2013 Jun;37(12):1931-8. doi: 10.1111/ejn.12226. Eur J Neurosci. 2013. PMID: 23773062 Review.
-
Reversal of age-related oxidative stress prevents hippocampal synaptic plasticity deficits by protecting D-serine-dependent NMDA receptor activation.Aging Cell. 2012 Apr;11(2):336-44. doi: 10.1111/j.1474-9726.2012.00792.x. Epub 2012 Feb 1. Aging Cell. 2012. PMID: 22230264
References
-
- Anderson P, Lomo T. Mode of activation of hippocampal pyramidal cells by excitatory synapses on dendrites. Exp Brain Res. 1966;2:247–60. - PubMed
-
- Andrasi E, Igaz S, Molnar Z, Mako S. Disturbances of magnesium concentrations in various brain areas in Alzheimer's disease. Magnes Res. 2000;13:189–96. - PubMed
-
- Andrasi E, Pali N, Molnar Z, Kosel S. Brain aluminum, magnesium and phosphorus contents of control and Alzheimer-diseased patients. J Alzheimers Dis. 2005;7:273–84. - PubMed
-
- Armand V, Louvel J, Pumain R, Heinemann U. Effects of new valproate derivatives on epileptiform discharges induced by pentylenetetrazole or low Mg2+ in rat entorhinal cortex-hippocampus slices. Epilepsy Res. 1998;32:345–55. - PubMed
Publication types
LinkOut - more resources
Full Text Sources