Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Sep:303:75-82.
doi: 10.1016/j.mbs.2018.06.004. Epub 2018 Jun 18.

The Bayesian adaptive lasso regression

Affiliations
Review

The Bayesian adaptive lasso regression

Rahim Alhamzawi et al. Math Biosci. 2018 Sep.

Abstract

Classical adaptive lasso regression is known to possess the oracle properties; namely, it performs as well as if the correct submodel were known in advance. However, it requires consistent initial estimates of the regression coefficients, which are generally not available in high dimensional settings. In addition, none of the algorithms used to obtain the adaptive lasso estimators provide a valid measure of standard error. To overcome these drawbacks, some Bayesian approaches have been proposed to obtain the adaptive lasso and related estimators. In this paper, we consider a fully Bayesian treatment for the adaptive lasso that leads to a new Gibbs sampler with tractable full conditional posteriors. Through simulations and real data analyses, we compare the performance of the new Gibbs sampler with some of the existing Bayesian and non-Bayesian methods. Results show that the new approach performs well in comparison to the existing Bayesian and non-Bayesian approaches.

Keywords: Adaptive lasso; Bayesian inference; Gibbs sampler; Hierarchical model; Linear regression.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources