Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug;30(31):e1800676.
doi: 10.1002/adma.201800676. Epub 2018 Jun 19.

Carbon-Quantum-Dots-Loaded Ruthenium Nanoparticles as an Efficient Electrocatalyst for Hydrogen Production in Alkaline Media

Affiliations

Carbon-Quantum-Dots-Loaded Ruthenium Nanoparticles as an Efficient Electrocatalyst for Hydrogen Production in Alkaline Media

Weidong Li et al. Adv Mater. 2018 Aug.

Abstract

Highly active, stable, and cheap Pt-free catalysts for the hydrogen evolution reaction (HER) are facing increasing demand as a result of their potential use in future energy-conversion systems. However, the development of HER electrocatalysts with Pt-like or even superior activity, in particular ones that can function under alkaline conditions, remains a significant challenge. Here, the synthesis of a novel carbon-loaded ruthenium nanoparticle electrocatalyst (Ru@CQDs) for the HER, using carbon quantum dots (CQDs), is reported. Electrochemical tests reveal that, even under extremely alkaline conditions (1 m KOH), the as-formed Ru@CQDs exhibits excellent catalytic behavior with an onset overpotential of 0 mV, a Tafel slope of 47 mV decade-1 , and good durability. Most importantly, it only requires an overpotential of 10 mV to achieve the current density of 10 mA cm-2 . Such catalytic characteristics are superior to the current commercial Pt/C and most noble metals, non-noble metals, and nonmetallic catalysts under basic conditions. These findings open a new field for the application of CQDs and add to the growing family of metal@CQDs with high HER performance.

Keywords: alkaline media; carbon quantum dots; electrocatalysis; hydrogen evolution; ruthenium nanoparticles.

PubMed Disclaimer

LinkOut - more resources