Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jun 19.
doi: 10.1002/asia.201800856. Online ahead of print.

Calix[5]phyrin for Fluoride Ion Sensing with Visible and Near Infrared Optical Responses

Affiliations

Calix[5]phyrin for Fluoride Ion Sensing with Visible and Near Infrared Optical Responses

Tomohiro Higashino et al. Chem Asian J. .

Abstract

Fluoride (F- ) ion sensing is an important topic due to its roles in health, medical, and environmental sciences. In this regard, colorimetric sensors with a near infrared (NIR) optical response are useful in biological systems because they can avoid interference from endogenous chromophores. Although calix[n]phyrins are highly attractive as sensors with the NIR optical response, studies on calix[n]phyrins are still limited owing to their intrinsic instability against ambient light and air. In this study, we report the synthesis and characterization of a new calix[5]phyrin bearing one sp3 -hybridized carbon atom as a π-expanded calix[n]phyrin. Upon addition of tetrabutylammonium fluoride, the calix[5]phyrin exhibited distinct NIR absorptions at 908 and 1064 nm as well as a visible color change. Importantly, it revealed an excellent selectivity for F- ion. These results demonstrate that calix[5]phyrins are promising colorimetric and NIR sensors of F- ion.

Keywords: anion sensing; calix[5]phyrin; fluorine; porphyrinoids; sensors.

PubMed Disclaimer

Similar articles

LinkOut - more resources