Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Apr 6;3(3):e650.
doi: 10.1097/PR9.0000000000000650. eCollection 2018 May.

Biased agonism: the quest for the analgesic holy grail

Affiliations

Biased agonism: the quest for the analgesic holy grail

M Alexander Stanczyk et al. Pain Rep. .

Abstract

Opioids alleviate pain, but adverse effects severely limit their usefulness. To solve this problem, biased ligands favoring 1 signaling pathway downstream of the μ-opioid receptor over another are being developed. In the target article, the authors synthesize compounds that preferentially activate G-protein or β-arrestin signaling. They find that increased bias towards G-protein signaling produces better antinociception with minimal side effects in mice models. G-protein-biased opioids may provide a safer treatment strategy.

Keywords: Bias; Functional selectivity; Opioid; Signaling.

PubMed Disclaimer

Conflict of interest statement

Sponsorships or competing interests that may be relevant to content are disclosed at the end of this article.

Figures

Figure 1.
Figure 1.
G-protein–biased compounds produce antinociception with reduced side effects. Fentanyl is a clinically used opioid analgesic that preferentially recruits β-arrestin downstream of the μ-opioid receptor (left). Consequently, fentanyl produces significant respiratory depression. In the target article, Schmid et al. synthesize SR-17018, an opioid that preferentially engages G-protein signaling (right). The authors demonstrate that SR-17018 produces antinociception with minimal respiratory depression relative to fentanyl.

References

    1. Altarifi AA, David B, Muchhala KH, Blough BE, Akbarali H, Negus SS. Effects of acute and repeated treatment with the biased mu opioid receptor agonist TRV130 (oliceridine) on measures of antinociception, gastrointestinal function, and abuse liability in rodents. J Psychopharmacol 2017;31:730–9. - PMC - PubMed
    1. Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, Lin FT. Enhanced morphine analgesia in mice lacking β-arrestin 2. Science 1999;286:2495–8. - PubMed
    1. DeWire SM, Yamashita DS, Rominger DH, Liu G, Cowan CL, Graczyk TM, Chen XT, Pitis PM, Gotchev D, Yuan C, Koblish M. A G protein-biased ligand at the μ-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. J Pharmacol Exp Ther 2013;344:708–17. - PubMed
    1. Kenakin T, Christopoulos A. Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat Rev Drug Discov 2013;12:205. - PubMed
    1. Kenakin T, Watson C, Muniz-Medina V, Christopoulos A, Novick S. A simple method for quantifying functional selectivity and agonist bias. ACS Chem Neurosci 2012;3:193–203. - PMC - PubMed

LinkOut - more resources