Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug 27;56(9):e00731-18.
doi: 10.1128/JCM.00731-18. Print 2018 Sep.

Multiplex PCR Analysis for Rapid Detection of Klebsiella pneumoniae Carbapenem-Resistant (Sequence Type 258 [ST258] and ST11) and Hypervirulent (ST23, ST65, ST86, and ST375) Strains

Affiliations

Multiplex PCR Analysis for Rapid Detection of Klebsiella pneumoniae Carbapenem-Resistant (Sequence Type 258 [ST258] and ST11) and Hypervirulent (ST23, ST65, ST86, and ST375) Strains

Fangyou Yu et al. J Clin Microbiol. .

Abstract

Carbapenem-resistant and hypervirulent Klebsiella pneumoniae strains have emerged recently. These strains are both hypervirulent and multidrug resistant and may also be highly transmissible and able to cause severe infections in both the hospital and the community. Clinical and public health needs require a rapid and comprehensive molecular detection assay to identify and track the spread of these strains and provide timely infection control information. Here, we develop a rapid multiplex PCR assay capable of distinguishing K. pneumoniae carbapenem-resistant isolates of sequence type 258 (ST258) and ST11, and hypervirulent ST23, ST65/ST375, and ST86 clones, as well as capsular types K1, K2, K locus type 47 (KL47), and KL64, and virulence genes rmpA, rmpA2, iutA, and iroN The assay demonstrated 100% concordance with 118 previously genotyped K. pneumoniae isolates and revealed different populations of carbapenem-resistant and hypervirulent strains in two collections in China and the United States. The results showed that carbapenem-resistant and hypervirulent K. pneumoniae strains are still rare in the United States, whereas in China, ∼50% of carbapenem-resistant strains carry rmpA/rmpA2 and iutA virulence genes, which are largely associated with the epidemic ST11 strains. Similarly, a high prevalence of hypervirulent strains was found in carbapenem-susceptible isolates in two Chinese hospitals, but these primarily belong to ST23, ST65/ST375, and ST86, which are distinct from the carbapenem-resistant strains. Taken together, our results demonstrated that this PCR assay can be a useful tool for molecular surveillance of carbapenem-resistant and hypervirulent K. pneumoniae strains.

Keywords: capsular polysaccharide; carbapenem resistance; hypervirulence; multiplex PCR; plasmid.

PubMed Disclaimer

Figures

FIG 1
FIG 1
Agarose gel electrophoresis of multiplex PCR products.

References

    1. Lee CR, Lee JH, Park KS, Jeon JH, Kim YB, Cha CJ, Jeong BC, Lee SH. 2017. Antimicrobial resistance of hypervirulent Klebsiella pneumoniae: epidemiology, hypervirulence-associated determinants, and resistance mechanisms. Front Cell Infect Microbiol 7:483. doi:10.3389/fcimb.2017.00483. - DOI - PMC - PubMed
    1. Shon AS, Bajwa RP, Russo TA. 2013. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence 4:107–118. doi:10.4161/viru.22718. - DOI - PMC - PubMed
    1. Gu D, Dong N, Zheng Z, Lin D, Huang M, Wang L, Chan EW, Shu L, Yu J, Zhang R, Chen S. 2018. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis 18:37–46. doi:10.1016/S1473-3099(17)30489-9. - DOI - PubMed
    1. Chen L, Kreiswirth BN. 2018. Convergence of carbapenem-resistance and hypervirulence in Klebsiella pneumoniae. Lancet Infect Dis 18:2–3. doi:10.1016/S1473-3099(17)30517-0. - DOI - PubMed
    1. Dong N, Zhang R, Liu L, Li R, Lin D, Chan EW, Chen S. 2018. Genome analysis of clinical multilocus sequence Type 11 Klebsiella pneumoniae from China. Microb Genom. doi:10.1099/mgen.0.000149. - DOI - PMC - PubMed

Publication types

MeSH terms