Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Sep 11;11(17):3007-3017.
doi: 10.1002/cssc.201801340. Epub 2018 Jul 23.

A Dual-Functional Catalyst for Cascade Meerwein-Pondorf-Verley Reduction and Dehydration of 4'-Methoxypropiophenone to Anethole

Affiliations

A Dual-Functional Catalyst for Cascade Meerwein-Pondorf-Verley Reduction and Dehydration of 4'-Methoxypropiophenone to Anethole

Hongwei Zhang et al. ChemSusChem. .

Abstract

Anethole is an ingredient in many flavours, fragrances and pharmaceutical formulations. To reduce the dependence of its supply on natural oils, a green route for anethole synthesis was designed on the basis of Meerwein-Pondorf-Verley (MPV) reduction and dehydration of 4'-methoxypropiophenone. The one-pot cascade reactions were heterogeneously catalysed by dual-functional Zr-MSU-3, a predominantly Lewis-acidic catalyst with a Si/Zr ratio of 10 and pores with sizes in the range of 3.2-4.2 nm. The use of 2-pentanol as solvent and hydrogen donor for the MPV reduction was advantageous, as its high boiling point enhances the rate of the reactions, especially the dehydration of the MPV product, 1-(4-methoxyphenyl)-propan-1-ol. This dispenses with the need for a strong acid catalyst that could result in by-products of acid-catalysed reactions. Anethole yields of 91 % with a trans/cis isomer ratio of about 92:8, similar to that of natural anethole, were obtained. In comparison, microporous Zr-beta (Si/Zr 12.5) gave lower activity owing to pore-size constraints. Hence, through design of the reactions and catalyst, 4'-methoxypropiophenone can be efficiently converted to anethole in a sustainable and green manner.

Keywords: domino reactions; heterogeneous catalysis; hydrogenation; lewis acids; zirconium.

PubMed Disclaimer

LinkOut - more resources