Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Sep;94(2):440-6.
doi: 10.1016/0008-8749(85)90268-0.

Generation of a soluble IFN-gamma inducer by oxidation of galactose residues on macrophages

Generation of a soluble IFN-gamma inducer by oxidation of galactose residues on macrophages

G Antonelli et al. Cell Immunol. 1985 Sep.

Abstract

Depletion of macrophages from human peripheral blood mononuclear cells (PBMC) caused a marked decrease in galactose oxidase and sodium periodate, but not a calcium ionophore, stimulated Interferon-gamma (IFN-gamma) production. Reconstitution of such depleted cultures with galactose oxidase treated macrophages, but not lymphocytes, restored IFN-gamma levels to those of control nonfractionated PBMC. Thus, galactose oxidase seemed to act on macrophages which in turn stimulated lymphocyte production of IFN-gamma. Unlike human cells which have terminal galactose residues on glycoproteins, murine cell glycoproteins terminate their oligosaccharide component in the order N-acetyl-neuraminic acid followed by D-galactose, N-acetyl-glucosamine, and glycoprotein. Galactose oxidase or sodium periodate only activated murine macrophages to stimulate lymphocyte IFN-gamma production after exposing D-galactose residues by the removal of the terminal N-acetyl-neuraminic acid residues with neuraminidase. Removal of such exposed terminal galactose residues with beta-galactosidase inhibited the effect of galactose oxidase on murine macrophages. Taken together, these results strongly suggest that oxidation of terminal galactose residues on macrophages is the initial site of action of galactose oxidase and sodium periodate. Studies with Boyden chambers have shown that galactose oxidase-treated macrophages released a soluble factor which stimulates lymphocyte production of IFN-gamma. Based on these findings, it appears that the oxidation of terminal galactose residues on the surface of macrophages leads to the induction and transmission of a soluble signal for lymphocyte production of IFN-gamma.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources