A New biological proxy for deep-sea paleo-oxygen: Pores of epifaunal benthic foraminifera
- PMID: 29930265
- PMCID: PMC6013501
- DOI: 10.1038/s41598-018-27793-4
A New biological proxy for deep-sea paleo-oxygen: Pores of epifaunal benthic foraminifera
Abstract
The negative consequences of fossil fuel burning for the oceans will likely include warming, acidification and deoxygenation, yet predicting future deoxygenation is difficult. Sensitive proxies for oxygen concentrations in ancient deep-ocean bottom-waters are needed to learn from patterns of marine deoxygenation during global warming conditions in the geological past. Understanding of past oxygenation effects related to climate change will better inform us about future patterns of deoxygenation. Here we describe a new, quantitative biological proxy for determining ocean paleo-oxygen concentrations: the surface area of pores (used for gas exchange) in the tests of deep-sea benthic foraminifera collected alive from 22 locations (water depths: 400 to 4100 m) at oxygen levels ranging from ~ 2 to ~ 277 μmol/l. This new proxy is based on species that are widely distributed geographically, bathymetrically and chronologically, and therefore should have broad applications. Our calibration demonstrates a strong, negative logarithmic correlation between bottom-water oxygen concentrations and pore surface area, indicating that pore surface area of fossil epifaunal benthic foraminifera can be used to reconstruct past changes in deep ocean oxygen and redox levels.
Conflict of interest statement
The authors declare no competing interests.
Figures



Similar articles
-
Benthic foraminifera (Protista) as tools in deep-water palaeoceanography: environmental influences on faunal characteristics.Adv Mar Biol. 2003;46:1-90. doi: 10.1016/s0065-2881(03)46002-1. Adv Mar Biol. 2003. PMID: 14601411 Review.
-
Glacial expansion of oxygen-depleted seawater in the eastern tropical Pacific.Nature. 2018 Oct;562(7727):410-413. doi: 10.1038/s41586-018-0589-x. Epub 2018 Oct 17. Nature. 2018. PMID: 30333577
-
Changes in North Atlantic deep-water oxygenation across the Middle Pleistocene Transition.Science. 2022 Aug 5;377(6606):654-659. doi: 10.1126/science.abj7761. Epub 2022 Aug 4. Science. 2022. PMID: 35926027
-
Spiculosiphon oceana (Foraminifera) a new bio-indicator of acidic environments related to fluid emissions of the Zannone Hydrothermal Field (central Tyrrhenian Sea).Mar Environ Res. 2018 May;136:89-98. doi: 10.1016/j.marenvres.2018.02.015. Epub 2018 Feb 22. Mar Environ Res. 2018. PMID: 29500050
-
Manifestation, Drivers, and Emergence of Open Ocean Deoxygenation.Ann Rev Mar Sci. 2018 Jan 3;10:229-260. doi: 10.1146/annurev-marine-121916-063359. Epub 2017 Sep 29. Ann Rev Mar Sci. 2018. PMID: 28961073 Review.
Cited by
-
Scaling laws explain foraminiferal pore patterns.Sci Rep. 2019 Jun 24;9(1):9149. doi: 10.1038/s41598-019-45617-x. Sci Rep. 2019. PMID: 31235827 Free PMC article.
-
Development of a new software for pore measurements in foraminifera and the constraints of pore proxy under high oxygen conditions.Sci Rep. 2025 Mar 1;15(1):7312. doi: 10.1038/s41598-025-91821-3. Sci Rep. 2025. PMID: 40025205 Free PMC article.
-
Response of Arctic benthic foraminiferal traits to past environmental changes.Sci Rep. 2023 Dec 13;13(1):22135. doi: 10.1038/s41598-023-47603-w. Sci Rep. 2023. PMID: 38092797 Free PMC article.
-
Global oceanic oxygenation controlled by the Southern Ocean through the last deglaciation.Sci Adv. 2024 Jan 19;10(3):eadk2506. doi: 10.1126/sciadv.adk2506. Epub 2024 Jan 19. Sci Adv. 2024. PMID: 38241365 Free PMC article.
-
Denitrification in foraminifera has an ancient origin and is complemented by associated bacteria.Proc Natl Acad Sci U S A. 2022 Jun 21;119(25):e2200198119. doi: 10.1073/pnas.2200198119. Epub 2022 Jun 15. Proc Natl Acad Sci U S A. 2022. PMID: 35704763 Free PMC article.
References
-
- Joos F, Plattner G-K, Stocker TF, Körtzinger A, Wallace DWR. EOS Trans. AGU. 2003. Trends in marine dissolved oxygen: Implications for ocean circulation changes and the carbon budget; pp. 197–201.
-
- Jaccard SL, Galbraith ED. Large climate-driven changes of oceanic oxygen concentration during the last deglaciation. Nature Geosci. 2011;5:151–156. doi: 10.1038/ngeo1352. - DOI
-
- Meyer KM, Kump LR. Oceanic Euxinia in Earth History: Causes and Consequences. Ann. Rev. Earth Planet. Sci. 2008;36:251–288. doi: 10.1146/annurev.earth.36.031207.124256. - DOI
-
- Jorissen, F. J., Fontanier, C., & Thomas, E. Paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics, In: Proxies in Late Cenozoic Paleoceanography Volume 1 of Developments in Marine Geology, Hillaire-Marcel, C. & de Vernal, A., eds., Elsevier, p. 263–325 (2007).
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous