Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul;10(7):724-731.
doi: 10.1038/s41557-018-0062-3. Epub 2018 Jun 21.

Cyclometallated ruthenium catalyst enables late-stage directed arylation of pharmaceuticals

Affiliations

Cyclometallated ruthenium catalyst enables late-stage directed arylation of pharmaceuticals

Marco Simonetti et al. Nat Chem. 2018 Jul.

Abstract

Biaryls are ubiquitous core structures in drugs, agrochemicals and organic materials that have profoundly improved many aspects of our society. Although traditional cross-couplings have made practical the synthesis of many biaryls, C-H arylation represents a more attractive and cost-effective strategy for building these structural motifs. Furthermore, the ability to install biaryl units in complex molecules via late-stage C-H arylation would allow access to valuable structural diversity, novel chemical space and intellectual property in only one step. However, known C-H arylation protocols are not suitable for substrates decorated with polar and delicate functionalities, which are commonly found in molecules that possess biological activity. Here we introduce a class of ruthenium catalysts that display a unique efficacy towards late-stage arylation of heavily functionalized substrates. The design and development of this class of catalysts was enabled by a mechanistic breakthrough on the Ru(II)-catalysed C-H arylation of N-chelating substrates with aryl (pseudo)halides, which has remained poorly understood for nearly two decades.

PubMed Disclaimer

Publication types