Selective stabilization of retinotectal synapses by an activity-dependent mechanism
- PMID: 2993037
Selective stabilization of retinotectal synapses by an activity-dependent mechanism
Abstract
How does each ingrowing retinal fiber select the right spot in the overall retinotopic projection? Chemospecific surface interactions appear to be sufficient only to organize a crude retinotopic map on the tectum during regeneration of the optic nerve of goldfish. Precise retinotopic ordering is achieved via an activity-dependent stabilization of appropriate synapses, based on the correlated activity of neighboring ganglion cells of the same receptive field type in the retina. Four treatments have been found to block the sharpening process: 1) blocking activity of the ganglion cells with intraocular tetrodotoxin (TTX); 2) rearing in total darkness; 3) correlated activation of all ganglion cells via stroboscopic illumination in a featureless environment; 4) block of retinotectal synaptic transmission with alpha-bungarotoxin. These experiments support a role for normal visually driven activity in sharpening the diffuse projection, and demonstrate that the correlated activity of the optic fibers interacts within the postsynaptic cells, probably through the summation of excitatory postsynaptic potentials. Intraocular TTX experiments suggest that a similar mechanism may drive both the formation of ocular dominance patches in fish tectum and kitten visual cortex and the segregation of different receptive field types in the lateral geniculate nucleus. Thus, it may be a general mechanism whereby the diffuse projections of early development are brought to a mature level of organization.
Similar articles
-
Formation of retinotopic connections: selective stabilization by an activity-dependent mechanism.Cell Mol Neurobiol. 1985 Jun;5(1-2):65-84. doi: 10.1007/BF00711086. Cell Mol Neurobiol. 1985. PMID: 2992788 Free PMC article.
-
Activity sharpens the regenerating retinotectal projection in goldfish: sensitive period for strobe illumination and lack of effect on synaptogenesis and on ganglion cell receptive field properties.J Neurobiol. 1988 Jul;19(5):395-411. doi: 10.1002/neu.480190502. J Neurobiol. 1988. PMID: 2839617
-
The effect of TTX-activity blockade and total darkness on the formation of retinotopy in the goldfish retinotectal projection.J Comp Neurol. 1991 Jan 15;303(3):412-23. doi: 10.1002/cne.903030307. J Comp Neurol. 1991. PMID: 2007657
-
Spontaneous patterned retinal activity and the refinement of retinal projections.Prog Neurobiol. 2005 Jul;76(4):213-35. doi: 10.1016/j.pneurobio.2005.09.002. Epub 2005 Nov 8. Prog Neurobiol. 2005. PMID: 16280194 Review.
-
Eye-specific segregation of optic afferents in mammals, fish, and frogs: the role of activity.Cell Mol Neurobiol. 1985 Jun;5(1-2):5-34. doi: 10.1007/BF00711083. Cell Mol Neurobiol. 1985. PMID: 3928161 Free PMC article. Review.
Cited by
-
Neural activity in the regenerating optic nerve of the goldfish.J Physiol. 1987 Oct;391:299-312. doi: 10.1113/jphysiol.1987.sp016739. J Physiol. 1987. PMID: 3443948 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Other Literature Sources