Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul;9(1):21-36.
doi: 10.3892/br.2018.1105. Epub 2018 May 29.

Identification of four genes as novel susceptibility loci for early-onset type 2 diabetes mellitus, metabolic syndrome, or hyperuricemia

Affiliations

Identification of four genes as novel susceptibility loci for early-onset type 2 diabetes mellitus, metabolic syndrome, or hyperuricemia

Yoshiji Yamada et al. Biomed Rep. 2018 Jul.

Abstract

Given that early-onset type 2 diabetes mellitus (T2DM), metabolic syndrome (MetS), and hyperuricemia have been shown to have strong genetic components, the statistical power of a genetic association study may be increased by focusing on early-onset subjects with these conditions. Although genome-wide association studies have identified various genes and loci significantly associated with T2DM, MetS, and hyperuricemia, genetic variants that contribute to predisposition to these conditions in Japanese subjects remain to be identified definitively. We performed exome-wide association studies (EWASs) for early-onset T2DM, MetS, or hyperuricemia to identify genetic variants that confer susceptibility to these conditions. A total of 8,102 individuals aged ≤65 years were enrolled in the present study. The EWAS for T2DM was performed with 7,407 subjects (1,696 cases, 5,711 controls), that for MetS with 4,215 subjects (2,296 cases, 1,919 controls), and that for hyperuricemia with 7,919 subjects (1,365 cases, 6,554 controls). Single nucleotide polymorphisms (SNPs) were genotyped with Illumina Human Exome-12 DNA Analysis BeadChip or Infinium Exome-24 BeadChip arrays. The relationship of allele frequencies for 31,210, 31,521, or 31,142 SNPs that passed quality control for T2DM, MetS, or hyperuricemia, respectively, was examined with Fisher's exact test. To compensate for multiple comparisons of genotypes with T2DM, MetS, or hyperuricemia, we applied Bonferroni's correction for statistical significance of association. The EWAS of allele frequencies revealed that four, six, or nine SNPs were significantly associated with T2DM (P<1.60×10-6), MetS (P<1.59×10-6), or hyperuricemia (P<1.61×10-6), respectively. Multivariable logistic regression analysis with adjustment for age and sex revealed that three, six, or nine SNPs were significantly related to T2DM (P<0.0031), MetS (P<0.0021), or hyperuricemia (P<0.0014). After examination of the association of identified SNPs to T2DM-, MetS-, or hyperuricemia-related traits, linkage disequilibrium of the SNPs, and results of previous genome-wide association studies, newly identified ZNF860 and OR4F6 were the susceptibility loci for T2DM, OR52E4 and OR4F6 for MetS, and HERPUD2 for hyperuricemia. Given that OR4F6 was significantly associated with both T2DM and MetS, we newly identified four genes (ZNF860, OR4F6, OR52E4, HERPUD2) that confer susceptibility to early-onset T2DM, MetS, or hyperuricemia. Determination of genotypes for the SNPs in these genes may prove informative for assessment of the genetic risk for T2DM, MetS, or hyperuricemia.

Keywords: diabetes mellitus; exome-wide association study; genetics; hyperuricemia; metabolic syndrome.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
LD map of six SNPs at 12q24.11 to 12q24.13 associated with hyperuricemia. LD was calculated as the square of the correlation coefficient (r2) and the strength of LD increases according to the color order of blue < gray < red. LD, linkage disequilibrium.

Similar articles

Cited by

References

    1. Kharroubi AT, Darwish HM. Diabetes mellitus: The epidemic of the century. World J Diabetes. 2015;6:850–867. doi: 10.4239/wjd.v6.i6.850. - DOI - PMC - PubMed
    1. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 2003;26(Suppl 1):S5–S20. - PubMed
    1. Ismail-Beigi F. Clinical practice. Glycemic management of type 2 diabetes mellitus. N Engl J Med. 2012;366:1319–1327. - PubMed
    1. Emerging Risk Factors Collaboration1 Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, Ingelsson E, Lawlor DA, Selvin E, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375:2215–2222. doi: 10.1016/S0140-6736(10)60484-9. - DOI - PMC - PubMed
    1. Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: Principles of pathogenesis and therapy. Lancet. 2005;365:1333–1346. doi: 10.1016/S0140-6736(05)61032-X. - DOI - PubMed

LinkOut - more resources