Sumoylation in plants: mechanistic insights and its role in drought stress
- PMID: 29931319
- DOI: 10.1093/jxb/ery233
Sumoylation in plants: mechanistic insights and its role in drought stress
Abstract
Post-translational modification by SUMO is an essential process that has a major role in the regulation of plant development and stress responses. Such diverse biological functions are accompanied by functional diversification among the SUMO conjugation machinery components and regulatory mechanisms that has just started to be identified in plants. In this review, we focus on the current knowledge of the SUMO conjugation system in plants in terms of components, substrate specificity, cognate interactions, enzyme activity, and subcellular localization. In addition, we analyze existing data on the role of SUMOylation in plant drought tolerance in model plants and crop species, paying attention to the genetic approaches used to stimulate or inhibit endogenous SUMO conjugation. The role in drought tolerance of potential SUMO targets identified in proteomic analyses is also discussed. Overall, the complexity of SUMOylation and the multiple genetic and environmental factors that are integrated to confer drought tolerance highlight the need for significant efforts to understand the interplay between SUMO and drought.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources