Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Oct 3:282:84-91.
doi: 10.1016/j.ijfoodmicro.2018.06.004. Epub 2018 Jun 8.

Nitrate reduction in the fermentation process of salt reduced dry sausages: Impact on microbial and physicochemical parameters and aroma profile

Affiliations

Nitrate reduction in the fermentation process of salt reduced dry sausages: Impact on microbial and physicochemical parameters and aroma profile

Laura Perea-Sanz et al. Int J Food Microbiol. .

Abstract

Slow fermented sausages with reduced ingoing amounts of sodium nitrate were manufactured: control (250 ppm), 15% (212.5 ppm) and 25% (187.5 ppm) reduction. The effect of nitrate reduction on microbiology and chemical parameters, volatile compounds and aroma production was studied. Parameters like, pH, aw and colour decreased during ripening, without being affected by nitrate reduction. Lipid oxidation increased during ripening and it was higher in control sausages due to fat content. Residual nitrite was below the detection limit during the whole process and residual nitrate decreased during ripening, with higher reduction in RN25 sausages. Lactic acid bacteria, total mesophilic bacteria and yeasts and moulds increased during ripening but Gram positive cocci decreased. Microbial counts from nitrate reduced sausages at the end of the manufacturing process were not statistically different from the control sausages with nitrate. Regarding volatile compounds formation, compounds derived from amino acid degradation were increased by nitrate reduction. Aroma compounds derived from amino acid degradation and responsible for strong odours, dimethyl disulphide (toasted, garlic) and methional (cooked potato) and, to a lesser extent, compounds derived from esterase activity producing fruity odours (ethyl acetate, ethyl butanoate, ethyl‑2‑hydroxypropanoate, ethyl‑2‑methylbutanoate and ethyl‑3‑methylbutanoate) and several compounds from carbohydrate fermentation acetic acid (vinegar odour) and 2-butanone (fruity) were related to the high nitrate reduction (25%). Despite nitrate reduction up to 25% produced minor effect on microbial growth, their metabolism is regulated by nitrate content and therefore by nitrite generation affecting the production of key aroma compounds that alter the sausage aroma profile.

Keywords: Aroma; Fermented sausage; Flavour; Microbial safety; Nitrate reduction.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources