Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Oct 15:117:319-331.
doi: 10.1016/j.bios.2018.06.025. Epub 2018 Jun 11.

Nano-biosensing approaches on tuberculosis: Defy of aptamers

Affiliations
Review

Nano-biosensing approaches on tuberculosis: Defy of aptamers

Behrouz Golichenari et al. Biosens Bioelectron. .

Abstract

Tuberculosis is a major global health problem caused by the bacterium Mycobacterium tuberculosis (Mtb) complex. According to WHO reports, 53 million TB patients died from 2000 to 2016. Therefore, early diagnosis of the disease is of great importance for global health care programs. The restrictions of traditional methods have encouraged the development of innovative methods for rapid, reliable, and cost-effective diagnosis of tuberculosis. In recent years, aptamer-based biosensors or aptasensors have drawn great attention to sensitive and accessible detection of tuberculosis. Aptamers are small short single-stranded molecules of DNA or RNA that fold to a unique form and bind to targets. Once combined with nanomaterials, nano-scale aptasensors provide powerful analytical platforms for diagnosing of tuberculosis. Various groups designed and studied aptamers specific for the whole cells of M. tuberculosis, mycobacterial proteins and IFN-γ for early diagnosis of TB. Advantages such as high specificity and strong affinity, potential for binding to a larger variety of targets, increased stability, lower costs of synthesis and storage requirements, and lower probability of contamination make aptasensors pivotal alternatives for future TB diagnostics. In recent years, the concept of SOMAmer has opened new horizons in high precision detection of tuberculosis biomarkers. This review article provides a description of the research progresses of aptamer-based and SOMAmer-based biosensors and nanobiosensors for the detection of tuberculosis.

Keywords: Aptamer; Aptasensor; Biosensor; Mycobacterium tuberculosis; SOMAmer; SOMAscan.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources