Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Jun;28(3):185-193.
doi: 10.1016/j.semradonc.2018.02.003.

The Role of Optical Surface Imaging Systems in Radiation Therapy

Affiliations
Free article
Review

The Role of Optical Surface Imaging Systems in Radiation Therapy

Jeremy D P Hoisak et al. Semin Radiat Oncol. 2018 Jun.
Free article

Abstract

Optical surface imaging is a nonradiographic, noninvasive technology for continuous localization of patients during radiation therapy. Surface-guided radiation therapy (SGRT) has been applied to many treatment sites including breast, intracranial, head and neck, and extremities. SGRT enables a reduction of initial setup variability, provides verification of immobilization continuously during treatment including at noncoplanar linac gantry angles, and provides dynamic surface information for use in gated and breath-hold treatment techniques, all of which can permit reductions in the margins required to account for target localization uncertainty. Ancillary benefits from surface imaging include the ability to use immobilization techniques that confer greater comfort to patients, a reduction in imaging dose through reduced radiographic localization requirements, and improvements to the speed, efficiency, and safety of clinical workflows. This review will describe the objectives of SGRT, review the commercially available surface imaging systems, and provide an overview of SGRT applications by treatment site. Limitations and future applications of surfacing imaging systems are also discussed.

PubMed Disclaimer

MeSH terms