Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug:71:162-172.
doi: 10.1016/j.cct.2018.06.012. Epub 2018 Jun 21.

Efficacy/toxicity dose-finding using hierarchical modeling for multiple populations

Affiliations

Efficacy/toxicity dose-finding using hierarchical modeling for multiple populations

Kristen M Cunanan et al. Contemp Clin Trials. 2018 Aug.

Abstract

Traditionally, Phase I oncology trials evaluate the safety profile of a novel agent and identify a maximum tolerable dose based on toxicity alone. With the development of biologically targeted agents, investigators believe the efficacy of a novel agent may plateau or diminish before reaching the maximum tolerable dose while toxicity continues to increase. This motivates dose-finding based on the simultaneous evaluation of toxicity and efficacy. Previously, we investigated hierarchical modeling in the context of Phase I dose-escalation studies for multiple populations and found borrowing strength across populations improved operating characteristics. In this article, we discuss three hierarchical extensions to commonly used probability models for efficacy and toxicity in Phase I-II trials and adapt our previously proposed dose-finding algorithm for multiple populations to this setting. First, we consider both parametric and non-parametric bivariate models for binary outcomes and, in addition, we consider an under-parameterized model that combines toxicity and efficacy into a single trinary outcome. Our simulation results indicate hierarchical modeling increases the probability of correctly identifying the optimal dose and increases the average number of patients treated at the optimal dose, with the under-parameterized hierarchical model displaying desirable and robust operating characteristics.

Keywords: Continual reassessment method; Dose-finding; Multiple populations; Phase I-II.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources