Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 May 11;9(22):5074-5081.
doi: 10.1039/c8sc01595c. eCollection 2018 Jun 14.

Rhodium-catalyzed asymmetric hydroamination and hydroindolation of keto-vinylidenecyclopropanes

Affiliations

Rhodium-catalyzed asymmetric hydroamination and hydroindolation of keto-vinylidenecyclopropanes

Song Yang et al. Chem Sci. .

Abstract

We reported a highly regio- and enantioselective hydroamination and hydroindolation of keto-vinylidenecyclopropanes via cationic Rh(i) catalysis in this context. The combination of various secondary amines and indoles with keto-vinylidenecyclopropanes afforded the corresponding hydrofunctionalization products in good to excellent yields with outstanding ee values under mild conditions. A new TMM-Rh model complex was proposed, providing an atom economical Rh-π-allyl precursor at the same time. Moreover, the resulting products could easily be transformed into more complex polyheterocycles upon further synthetic manipulation.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. Previous work and this work.
Scheme 2
Scheme 2. One-pot asymmetric N1 allylic alkylation of indoles.
Scheme 3
Scheme 3. Derivatizations of the products 3aa and 6aa.
Scheme 4
Scheme 4. A plausible reaction mechanism.

References

    1. For selected reviews on allylic substitutions, see

    2. Grange R. L., Clizbe E. A., Evans P. A. Synthesis. 2016;48:2911–2968.
    3. Oliver S., Evans P. A. Synthesis. 2013;45:3179–3198.
    4. Lu Z., Ma S.-M. Angew. Chem., Int. Ed. 2008;47:258–297. - PubMed
    5. Stoltz B. M., Mohr J. T. Chem. Asian J. 2007;2:1476–1491. - PMC - PubMed
    6. Miyabe H., Takemoto Y. Synlett. 2005;2005:1641–1655.
    7. Helmchen G. J. Org. Chem. 1999;576:203–214.
    8. Trost B. M., Vranken D. L. V. Chem. Rev. 1996;96:395–422. - PubMed
    1. For selected reviews on the applications of allylic substitutions in organic synthesis, see

    2. Qu J.-P., Helmchen G. Acc. Chem. Res. 2017;50:2539–2555. - PubMed
    3. Huters A. D., Styduhar E. D., Garg N. K. Angew. Chem., Int. Ed. 2012;51:3758–3765. - PubMed
    4. Trost B. M., Crawley M. L. Chem. Rev. 2003;103:2921–2944. - PubMed
    1. For selected examples of allylic C–H functionalization, see

    2. Yin G.-Y., Wu Y.-C., Liu G.-S. J. Am. Chem. Soc. 2010;132:11978–11987. - PubMed
    3. Liu G.-S., Stahl S. S. J. Am. Chem. Soc. 2007;129:6328–6335. - PubMed
    4. Chen M. S., White M. C. J. Am. Chem. Soc. 2004;126:1346–1347. - PubMed
    1. For selected reviews on allylic substitutions via allylic alcohols, see

    2. Butt N., Yang G.-Q., Zhang W.-B. Chem. Rec. 2016;16:2683–2692. - PubMed
    3. Butt N. A., Zhang W.-B. Chem. Soc. Rev. 2015;44:7929–7967. - PubMed
    4. Sundararaju B., Achard M., Bruneau C. Chem. Soc. Rev. 2012;41:4467–4483. - PubMed
    5. Bandini M. Angew. Chem., Int. Ed. 2011;50:994–995. - PubMed
    6. Szabó K. J. Synlett. 2006;2006:811–824.
    7. Tamaru Y. Eur. J. Org. Chem. 2005;2005:2647–2656.
    8. Muzart J. Tetrahedron. 2005;61:4179–4212.
    1. For selected examples on allylic substitutions via allylic alcohols, see

    2. Jing J.-Y., Huo X.-H., Shen J.-F., Fu J.-K., Meng Q.-H., Zhang W.-B. Chem. Commun. 2017;53:5151–5154. - PubMed
    3. Huo X.-H., Yang G.-Q., Liu D.-L., Liu Y.-G., Gridnev I. D., Zhang W.-B. Angew. Chem., Int. Ed. 2014;53:6776–6780. - PubMed
    4. Shibuya R., Lin L., Nakahara Y., Mashima K., Ohshima T. Angew. Chem., Int. Ed. 2014;53:4377–4381. - PubMed
    5. Li Y.-X., Xuan Q.-Q., Liu L., Wang D., Chen Y.-J., Li C.-J. J. Am. Chem. Soc. 2013;135:12536–12539. - PubMed
    6. Das K., Shibuya R., Nakahara Y., Germain N., Ohshima T., Mashima K. Angew. Chem., Int. Ed. 2012;51:150–154. - PubMed
    7. Jiang G.-X., List B. Angew. Chem., Int. Ed. 2011;50:9471–9474. - PubMed
    8. Ohshima T., Miyamoto Y., Ipposhi J., Nakahara Y., Utsunomiya M., Mashima K. J. Am. Chem. Soc. 2009;131:14317–14328. - PubMed
    9. Defieber C., Ariger M. A., Moriel P., Carreira E. M. Angew. Chem., Int. Ed. 2007;46:3139–3143. - PubMed
    10. Ozawa F., Okamoto H., Kawagishi S., Yamamoto S., Minami T., Yoshifuji M. J. Am. Chem. Soc. 2002;124:10968–10969. - PubMed