Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Sep;28(3):237-45.

Homologous desensitization of the beta-adrenergic receptor. Functional integrity of the desensitized receptor from mammalian lung

  • PMID: 2993846

Homologous desensitization of the beta-adrenergic receptor. Functional integrity of the desensitized receptor from mammalian lung

R H Strasser et al. Mol Pharmacol. 1985 Sep.

Abstract

Previous work has demonstrated that injection of rats with isoproterenol is rapidly (10 min) followed by the development of a homologous form of desensitization of the beta-agonist-coupled adenylate cyclase in lung membranes. Half the receptor pool becomes sequestered in a light membrane fraction while the other half remains in the plasma membranes but becomes functionally uncoupled. In the present work we sought to assess whether "local sequestration" of the functionally intact receptor away from the effector adenylate cyclase in the plasma membrane contributes to the uncoupling of the beta-adrenergic receptor observed in the plasma membranes. We tested the functionality of the desensitized beta-adrenergic receptor in three different ways. We reconstituted the affinity chromatography purified control and "desensitized" receptors with pure Ns from human erythrocytes and assessed the ability to induce GTPase activity in Ns. Both control and desensitized beta-adrenergic receptors stimulate similar levels of GTPase activity in Ns (852 +/- 38 versus 738 +/- 49 fmol of Pi released/30 min (p greater than 0.05, n = 4). To further assess the relative ability of control and desensitized beta-adrenergic receptors to couple to another source of Ns we fused reconstituted beta-adrenergic receptors to Xenopus laevis erythrocytes, which contain Ns and adenylate cyclase but essentially no beta-adrenergic receptors. The functional interactions of control and desensitized beta-adrenergic receptor with the adenylate cyclase system of the acceptor cells was assessed by measuring the beta-agonist-stimulated adenylate cyclase activity and the agonist-induced formation of the high affinity state of the beta-adrenergic receptor (RH). Again both control and desensitized beta-adrenergic receptors appeared to interact with Ns to the same extent. To test if a local sequestration of the beta-adrenergic receptor away from Ns within the plasma membrane might contribute to the uncoupling of the beta-adrenergic receptors during desensitization, plasma membranes from control and desensitized lungs were treated with the fusogen polyethylene glycol to disrupt any compartmentalization of protein components within the plasma membrane. After polyethylene glycol treatment the previously uncoupled beta-adrenergic receptors could be recoupled to Ns as assessed by the formation of RH in agonist competition curves. These data suggest that in marked contrast to the heterologous type of desensitization, homologous desensitization may involve a local sequestration of a functionally intact beta-adrenergic receptor away from the adenylate cyclase effector system.

PubMed Disclaimer

Publication types

LinkOut - more resources