Identification of research hypotheses and new knowledge from scientific literature
- PMID: 29940927
- PMCID: PMC6019216
- DOI: 10.1186/s12911-018-0639-1
Identification of research hypotheses and new knowledge from scientific literature
Abstract
Background: Text mining (TM) methods have been used extensively to extract relations and events from the literature. In addition, TM techniques have been used to extract various types or dimensions of interpretative information, known as Meta-Knowledge (MK), from the context of relations and events, e.g. negation, speculation, certainty and knowledge type. However, most existing methods have focussed on the extraction of individual dimensions of MK, without investigating how they can be combined to obtain even richer contextual information. In this paper, we describe a novel, supervised method to extract new MK dimensions that encode Research Hypotheses (an author's intended knowledge gain) and New Knowledge (an author's findings). The method incorporates various features, including a combination of simple MK dimensions.
Methods: We identify previously explored dimensions and then use a random forest to combine these with linguistic features into a classification model. To facilitate evaluation of the model, we have enriched two existing corpora annotated with relations and events, i.e., a subset of the GENIA-MK corpus and the EU-ADR corpus, by adding attributes to encode whether each relation or event corresponds to Research Hypothesis or New Knowledge. In the GENIA-MK corpus, these new attributes complement simpler MK dimensions that had previously been annotated.
Results: We show that our approach is able to assign different types of MK dimensions to relations and events with a high degree of accuracy. Firstly, our method is able to improve upon the previously reported state of the art performance for an existing dimension, i.e., Knowledge Type. Secondly, we also demonstrate high F1-score in predicting the new dimensions of Research Hypothesis (GENIA: 0.914, EU-ADR 0.802) and New Knowledge (GENIA: 0.829, EU-ADR 0.836).
Conclusion: We have presented a novel approach for predicting New Knowledge and Research Hypothesis, which combines simple MK dimensions to achieve high F1-scores. The extraction of such information is valuable for a number of practical TM applications.
Keywords: Events; Hypothesis; Meta-knowledge; New knowledge; Text mining.
Conflict of interest statement
Ethics approval and consent to participate
No ethics approval was required for any element of this study.
Consent for publication
Not Applicable.
Competing interests
The authors declare that they have no competing interests.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Figures


References
-
- Scharffetter-Kochanek K, Singh K, Tasdogan A, Wlaschek M, Gatzka M, Hainzl A, Peters T. Reduction of CD18 promotes expansion of inflammatory gd T cells collaborating with CD4 T cells in chronic murine psoriasiform dermatitis. J Immunol. 2013;191:5477–88. doi: 10.4049/jimmunol.1300976. - DOI - PubMed
-
- Stenetorp P, Pyysalo S, Topić G, Ohta T, Ananiadou S, Tsujii J. BRAT: a web-based tool for NLP-assisted text annotation. In: Proceedings of the Demonstrations at the 13th Conference of the European Chapter of the Association for Computational Linguistics. Association for Computational Linguistics: 2012. p. 102–107.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials