Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Sep 27;229(4720):1358-65.
doi: 10.1126/science.2994218.

Three-dimensional structure of poliovirus at 2.9 A resolution

Three-dimensional structure of poliovirus at 2.9 A resolution

J M Hogle et al. Science. .

Abstract

The three-dimensional structure of poliovirus has been determined at 2.9 A resolution by x-ray crystallographic methods. Each of the three major capsid proteins (VP1, VP2, and VP3) contains a "core" consisting of an eight-stranded antiparallel beta barrel with two flanking helices. The arrangement of beta strands and helices is structurally similar and topologically identical to the folding pattern of the capsid proteins of several icosahedral plant viruses. In each of the major capsid proteins, the "connecting loops" and NH2- and COOH-terminal extensions are structurally dissimilar. The packing of the subunit "cores" to form the virion shell is reminiscent of the packing in the T = 3 plant viruses, but is significantly different in detail. Differences in the orientations of the subunits cause dissimilar contacts at protein-protein interfaces, and are also responsible for two major surface features of the poliovirion: prominent peaks at the fivefold and threefold axes of the particle. The positions and interactions of the NH2- and COOH-terminal strands of the capsid proteins have important implications for virion assembly. Several of the "connecting loops" and COOH-terminal strands form prominent radial projections which are the antigenic sites of the virion.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources