Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jun 11:12:222.
doi: 10.3389/fnhum.2018.00222. eCollection 2018.

Effects of a 7-Day Meditation Retreat on the Brain Function of Meditators and Non-Meditators During an Attention Task

Affiliations

Effects of a 7-Day Meditation Retreat on the Brain Function of Meditators and Non-Meditators During an Attention Task

Elisa H Kozasa et al. Front Hum Neurosci. .

Abstract

Meditation as a cognitive enhancement technique is of growing interest in the field of health and research on brain function. The Stroop Word-Color Task (SWCT) has been adapted for neuroimaging studies as an interesting paradigm for the understanding of cognitive control mechanisms. Performance in the SWCT requires both attention and impulse control, which is trained in meditation practices. We presented SWCT inside the MRI equipment to measure the performance of meditators compared with non-meditators before and after a meditation retreat. The aim of this study was to evaluate the effects of a 7-day Zen intensive meditation training (a retreat) on meditators and non-meditators in this task on performance level and neural mechanisms. Nineteen meditators and 14 non-meditators were scanned before and after a 7-day Zen meditation retreat. No significant differences were found between meditators and non-meditators in the number of the correct responses and response time (RT) during SWCT before and after the retreat. Probably, due to meditators training in attention, their brain activity in the contrast incongruent > neutral during the SWCT in the anterior cingulate, ventromedial prefrontal cortex/anterior cingulate, caudate/putamen/pallidum/temporal lobe (center), insula/putamen/temporal lobe (right) and posterior cingulate before the retreat, were reduced compared with non-meditators. After the meditation retreat, non-meditators had reduced activation in these regions, becoming similar to meditators before the retreat. This result could be interpreted as an increase in the brain efficiency of non-meditators (less brain activation in attention-related regions and same behavioral response) promoted by their intensive training in meditation in only 7 days. On the other hand, meditators showed an increase in brain activation in these regions after the same training. Intensive meditation training (retreat) presented distinct effects on the attention-related regions in meditators and non-meditators probably due to differences in expertise, attention processing as well as neuroplasticity.

Keywords: Stroop task; attention; fMRI; meditation; retreat.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Stroop Word-Color Task (SWCT) fMRI paradigm.
Figure 2
Figure 2
Regions in which a significant group × time interaction was observed in the comparison between meditators and non-meditators in the contrast incongruent (INC) > neutral (NEU) before and after a meditation retreat.
Figure 3
Figure 3
Change in functional activation in the regions of significant group × session interaction (mean and standard-error bars) showing that after the retreat, there is a decrease in activation in the non-meditator group, and an increase in the meditator group. Cluster 1 encompasses caudate nucleus, temporal lobe, putamen and insula; cluster 2 encompasses putamen, temporal lobe and caudate nucleus; cluster 3 encompasses anterior cingulate, frontal lobe, paracingulate; cluster 4 encompasses posterior cingulate, paracingulate, anterior cingulate, callosal body, frontal lobe and juxtapositional lobule cortex.

Similar articles

Cited by

References

    1. Austin J. H. (2013). Zen and the brain: mutually illuminating topics. Front. Psychol. 4:784. 10.3389/fpsyg.2013.00784 - DOI - PMC - PubMed
    1. Baer R. A. (2003). Mindfulness training as a clinical intervention: a conceptual and empirical review. Clin. Psychol. Sci. Pract. 10, 125–143. 10.1093/clipsy/bpg015 - DOI
    1. Birn R. M., Diamond J. B., Smith M. A., Bandettini P. A. (2006). Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage 31, 1536–1548. 10.1016/j.neuroimage.2006.02.048 - DOI - PubMed
    1. Botvinick M. M., Braver T. S., Barch D. M., Carter C. S., Cohen J. D. (2001). Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652. 10.1037/0033-295X.108.3.624 - DOI - PubMed
    1. Brefczynski-Lewis J. A., Lutz A., Schaefer H. S., Levinson D. B., Davidson R. J. (2007). Neural correlates of attentional expertise in long-term meditation practitioners. Proc. Natl. Acad. Sci. U S A 104, 11483–11488. 10.1073/pnas.0606552104 - DOI - PMC - PubMed

LinkOut - more resources