Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jun 26;13(6):e0199734.
doi: 10.1371/journal.pone.0199734. eCollection 2018.

A whole-genome transcriptome analysis of articular chondrocytes in secondary osteoarthritis of the hip

Affiliations

A whole-genome transcriptome analysis of articular chondrocytes in secondary osteoarthritis of the hip

Takashi Aki et al. PLoS One. .

Abstract

Objective: To date, exhaustive gene expression analyses of chondrocytes in hip osteoarthritis (OA) have yielded specific gene expression patterns. No study has reported on the exhaustive transcriptome of secondary hip OA based on acetabular dysplasia in a Japanese population, while previous reports have focused on primary or idiopathic hip OA in Caucasian populations. This study aims to search for specific gene expression patterns of secondary hip OA chondrocytes by transcriptome analysis.

Design: Human articular cartilage was obtained from femoral heads following hemiarthroplasty for femoral neck fracture (N = 8; non-OA) and total hip arthroplasty for secondary hip OA (N = 12). Total RNA was extracted from the articular cartilage and submitted for microarray analysis. The obtained data were used to perform gene expression analysis, GO enrichment analysis and pathway analysis and were compared with data from primary hip OA in Caucasian populations in the literature.

Results: We identified 888 upregulated (fold change: FC ≥ 2) and 732 downregulated (FC ≤ 0.5) genes in hip OA versus non-OA chondrocytes, respectively. Only 10% of upregulated genes were common between the secondary and primary OA. The newly found genes prominently overexpressed in the secondary hip OA chondrocytes were DPT, IGFBP7, and KLF2. Pathway analysis revealed extracellular matrix (ECM)-receptor interaction as an OA-related pathway, which was similar to previous reports in primary hip OA.

Conclusions: This is the first study to report the genome-wide transcriptome of secondary hip OA chondrocytes and demonstrates new potential OA-related genes. Gene expression patterns were different between secondary and primary hip OA, although the results of pathway and functional analysis were similar.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Femoral head of #NOF (fracture of neck of femur: non-OA) and OA.
(A) A femoral head of #NOF. (B) A femoral head of a typical secondary OA. The articular cartilage pieces were obtained from the middle to deep layer of the non-weight bearing, macroscopically intact area from #NOF femoral head (white arrow heads), and the surface layer (black arrow heads) surrounding the weight-bearing, eburnated area (*) from OA femoral heads, respectively.
Fig 2
Fig 2. qRT-PCR replication study.
The figures show relative gene expression of 12 prominently overexpressed gene in OA chondrocytes detected by the microarray analysis. ASPN (A), COL1A2 (B), COL2A1 (C), COL3A2 (D), COL5A1 (E), KLF2 (F), MXRA5 (G), OGN (H), PCOLCE (I), SPARC (J), TGFBI (K), and TNFAIP6 (L). The data were shown as average ± standard error of mean (SEM) (**: p < 0.01).
Fig 3
Fig 3. Historical image of articular cartilage.
The figure shows the representative sections of non-OA (a, b) and OA (c, d) articular cartilage. Safranin O (a, c) and Alcian Blue / Sirius Red staining (b, d) were performed. On the surface layer of OA cartilage, degeneration with fibrillation and cracks was confirmed. Chondrocytes were enlarged and clusters formed. All figure taken with a magnification x100 and Scale bars = 100μm.
Fig 4
Fig 4. Compared gene profiles.
Venn diagram demonstrating the overlap of the differentially expressed genes between secondary and primary hip OA. Overlapping portion of the three circles indicates the genes significantly expressed in both studies in common (36 up-regulated genes and 56 down-regulated genes). In the inner circles on the left side, the area not overlapped with the primary OA’s circle indicate differentially expressed genes in secondary (316 up-regulated genes and 103 down-regulated genes).

References

    1. Goldring MB, Goldring SR. Osteoarthritis. J Cell Physiol. 2007;213(3):626–634. doi: 10.1002/jcp.21258 - DOI - PubMed
    1. Neogi T, Zhang Y. Epidemiology of osteoarthritis. Rheum Dis Clin North Am. 2013;39(1):1–19. doi: 10.1016/j.rdc.2012.10.004 - DOI - PMC - PubMed
    1. Yoshimura N, Campbell L, Hashimoto T, Kinoshita H, Okayasu T, Wilman C, et al. Acetabular dysplasia and hip osteoarthritis in Britain and Japan. Br J Rheumatol. 1998;37(11):1193–1197. - PubMed
    1. Yoshimura N, Muraki S, Oka H, Kawaguchi H, Nakamura K, Akune T. Cohort profile: research on Osteoarthritis/Osteoporosis Against Disability study. Int J Epidemiol. 2010;39(4):988–995. doi: 10.1093/ije/dyp276 - DOI - PubMed
    1. Hunter DJ, Schofield D, Callander E. The individual and socioeconomic impact of osteoarthritis. Nat Rev Rheumatol. 2014;10(7):437–441. doi: 10.1038/nrrheum.2014.44 - DOI - PubMed

Publication types

LinkOut - more resources