Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jun 26;18(1):207.
doi: 10.1186/s12887-018-1188-6.

Implementation of preemptive fluid strategy as a bundle to prevent fluid overload in children with acute respiratory distress syndrome and sepsis

Affiliations

Implementation of preemptive fluid strategy as a bundle to prevent fluid overload in children with acute respiratory distress syndrome and sepsis

Franco Díaz et al. BMC Pediatr. .

Abstract

Background: Fluid overload (FO) is associated with unfavorable outcomes in critically ill children. Clinicians are encouraged to avoid FO; however, strategies to avoid FO are not well-described in pediatrics. Our aim was to implement a bundle strategy to prevent FO in children with sepsis and pARDS and to compare the outcomes with a historical cohort.

Methods: A quality improvement initiative, known as preemptive fluid strategy (PFS) was implemented to prevent early FO, in a 12-bed general PICU. Infants on mechanical ventilation (MV) fulfilling pARDS and sepsis criteria were prospectively recruited. For comparison, data from a historical cohort from 2015, with the same inclusion and exclusion criteria, was retrospectively reviewed. The PFS bundle consisted of 1. maintenance of intravenous fluids (MIVF) at 50% of requirements; 2. drug volume reduction; 3. dynamic monitoring of preload markers to determine the need for fluid bolus administration; 4. early use of diuretics; and 5. early initiation of enteral feeds. The historical cohort treatment, the standard fluid strategy (SFS), were based on physician preferences. Peak fluid overload (PFO) was the primary outcome. PFO was defined as the highest FO during the first 72 h. FO was calculated as (cumulative fluid input - cumulative output)/kg*100. Fluid input/output were registered every 12 h for 72 h.

Results: Thirty-seven patients were included in the PFS group (54% male, 6 mo (IQR 2,11)) and 39 with SFS (64%male, 3 mo (IQR1,7)). PFO was lower in PFS (6.31% [IQR4.4-10]) compared to SFS (12% [IQR8.4-15.8]). FO was lower in PFS compared to CFS as early as 12 h after admission [2.4(1.4,3.7) v/s 4.3(1.5,5.5), p < 0.01] and maintained during the study. These differences were due to less fluid input (MIVF and fluid boluses). There were no differences in the renal function test. PRBC requirements were lower during the first 24 h in the PFS (5%) compared to SFS (28%, p < 0.05). MV duration was 81 h (58,98) in PFS and 118 h (85154) in SFS(p < 0.05). PICU LOS in PFS was 5 (4, 7) and in SFS was 8 (6, 10) days.

Conclusion: Implementation of a bundle to prevent FO in children on MV with pARDS and sepsis resulted in less PFO. We observed a decrease in MV duration and PICU LOS. Future studies are needed to address if PFS might have a positive impact on health outcomes.

Keywords: Fluid overload; Mechanical ventilation; PARDS; Pediatrics; Sepsis.

PubMed Disclaimer

Conflict of interest statement

Competing interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Hospital Padre Hurtado’s review board approved the quality improvement project waiving the requirement for individual written consent.

Consent for publication

Not applicable.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Box plot graph of cumulative and peak fluid overload during the first 72 h after admission in children with sepsis and ARDS with preemptive fluid strategy (white) and standard fluid strategy (gray). (* P < 0.05). Abbreviations: ARDS: acute respiratory distress syndrome; PFO: peak fluid overload
Fig. 2
Fig. 2
Maintenance intravenous fluid administration (ml·kg−1·12 h−1) in both groups during the study intervals after admission (a). Percentage of patients that received at least one fluid bolus during the study intervals after admission (b). (* P < 0.05). Abbreviations: PFS: preemptive fluid strategy; SFS: standard fluid strategy

Similar articles

Cited by

References

    1. Carcillo JA, Kuch BA, Han YY, et al. Mortality and functional morbidity after use of PALS/APLS by community physicians. Pediatrics. 2009;124(2):500–508. doi: 10.1542/peds.2008-1967. - DOI - PubMed
    1. Davis AL, Carcillo JA, Aneja RK, et al. The American College of Critical Care Medicine Clinical Practice Parameters for hemodynamic support of pediatric and neonatal septic shock. Pediatr Crit Care Med. 2017;18(9):884–890. doi: 10.1097/PCC.0000000000001259. - DOI - PMC - PubMed
    1. Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis campaign: international guidelines for Management of Sepsis and Septic Shock: 2016. Crit Care Med. 2017;45(3):486–552. doi: 10.1097/CCM.0000000000002255. - DOI - PubMed
    1. Oliveira CF, Nogueira de Sá FR, Oliveira DS, Gottschald AF, Moura JD, Shibata AR, Troster EJ, Vaz FA, Carcillo JA. Time- and fluid-sensitive resuscitation for hemodynamic support of children in septic shock: barriers to the implementationof the American College of Critical Care Medicine/Pediatric Advanced Life Support Guidelines in a pediatric intensive care unit in a developing world. Pediatr Emerg Care. 2008;24(12):810–815. doi: 10.1097/PEC.0b013e31818e9f3a. - DOI - PubMed
    1. Hilton AK, Bellomo R. Totem and taboo: fluids in sepsis. Crit Care. 2011;15(3):164. doi: 10.1186/cc10247. - DOI - PMC - PubMed

Publication types

MeSH terms