Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Sep 10;818(3):291-8.
doi: 10.1016/0005-2736(85)90002-1.

The mechanism of calcium uptake by liver microsomes: effect of anions and ionophores

The mechanism of calcium uptake by liver microsomes: effect of anions and ionophores

K M Chan et al. Biochim Biophys Acta. .

Abstract

The mechanism of calcium uptake by liver microsomes was investigated using various anions and ionophores. Calcium uptake was shown to be specific to microsomes and unlikely to be due to contamination by plasma membranes by correlation of calcium uptake to the marker enzymes specific for these two fractions. Under the conditions employed, phosphates, sulfate, chloride, acetate, nitrate, thiocyanate, maleate, succinate and oxalate all stimulated calcium uptake by microsomes, but to different degrees. The greatest effect (4-6-fold) was observed with phosphate. On the contrary, phosphate is the only anion that stimulates the plasma membrane calcium uptake to any significant degree. Treatment of isolated microsomes with 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene (DIDS) resulted in inhibition of ATP- and anion-dependent calcium uptake. A lipid-permeable organic acid such as maleate retained its ability to promote calcium uptake in DIDS-treated microsomes. However, a lipophilic anion, such as nitrate, stimulated calcium uptake only in the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP). In addition, 2 microM valinomycin, when added in the absence or presence of 10 to 100 mM K+, had no stimulatory effect on calcium uptake. These results appear to be consistent with a model in which the active uptake of calcium into microsomes involves electroneutral Ca2+-nH+ exchange.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources