Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug 8;30(31):315803.
doi: 10.1088/1361-648X/aacf65. Epub 2018 Jun 27.

Nodeless superconductivity in the cage-type superconductor Sc5Ru6Sn18 with preserved time-reversal symmetry

Affiliations

Nodeless superconductivity in the cage-type superconductor Sc5Ru6Sn18 with preserved time-reversal symmetry

D Kumar et al. J Phys Condens Matter. .

Abstract

We report the single-crystal synthesis and detailed investigations of the cage-type superconductor Sc5Ru6Sn18, using powder x-ray diffraction (XRD), magnetization, specific-heat and muon-spin relaxation (µSR) measurements. Sc5Ru6Sn18 crystallizes in a tetragonal structure (space group I41/acd) with lattice parameters a = 1.387(3) nm and c = 2.641(5) nm. Both DC and AC magnetization measurements prove the type-II superconductivity in Sc5Ru6Sn18 with T c ≈ 3.5(1) K, a lower critical field [Formula: see text] = 157(9) Oe and an upper critical field, [Formula: see text] = 26(1) kOe. The zero-field electronic specific-heat data are well fitted using a single-gap BCS model, with [Formula: see text] = 0.64(1) meV. The Sommerfeld constant γ varies linearly with the applied magnetic field, indicating s-wave superconductivity in Sc5Ru6Sn18. Specific-heat and transverse-field (TF) µSR measurements reveal that Sc5Ru6Sn18 is a superconductor with strong electron-phonon coupling, with TF-µSR also suggesting a single-gap s-wave character of the superconductivity. Furthermore, zero-field µSR measurements do not detect spontaneous magnetic fields below T c, hence implying that time-reversal symmetry is preserved in Sc5Ru6Sn18.

PubMed Disclaimer

LinkOut - more resources