The impact of host genetic background in the Pseudomonas aeruginosa respiratory infections
- PMID: 29947963
- PMCID: PMC7087806
- DOI: 10.1007/s00335-018-9753-8
The impact of host genetic background in the Pseudomonas aeruginosa respiratory infections
Abstract
Understanding the significance of human genetic diversity in modulating host susceptibility to opportunistic infections is an emerging challenge in the field of respiratory illnesses. While it is recognized that diverse bacterial strains account for differential disease manifestations, emerging data indicate that host genetic diversity is an important determinant factor that influences the severity of opportunistic infections. With particular regard to respiratory illnesses mediated by the gram-negative bacterium Pseudomonas aeruginosa, diverse genetic background is also emerging as a key contributor. Human-genome-wide association studies are a common approach for determining the inter-individual genetic variation associated with variability of the pulmonary infections. Historically, diverse murine inbred mouse strains and ex-vivo cellular models were considered complementary to human studies for establishing the contribution of genetic background to P. aeruginosa respiratory infections. More recently, the development of a new mouse model of infection, mirroring human airway diseases, combined with innovative murine resource populations, modelling human genetic variation, provides additional insights into the mechanisms of genetic susceptibility. In this review, we cover the recent state of the art of human and animal studies and we discuss future potential challenges in the field of P. aeruginosa respiratory infections.
Similar articles
-
Host genetic diversity influences the severity of Pseudomonas aeruginosa pneumonia in the Collaborative Cross mice.BMC Genet. 2015 Aug 28;16:106. doi: 10.1186/s12863-015-0260-6. BMC Genet. 2015. PMID: 26310945 Free PMC article.
-
Collaborative Cross Mice Yield Genetic Modifiers for Pseudomonas aeruginosa Infection in Human Lung Disease.mBio. 2020 Mar 3;11(2):e00097-20. doi: 10.1128/mBio.00097-20. mBio. 2020. PMID: 32127447 Free PMC article.
-
Insights into host-pathogen interactions from state-of-the-art animal models of respiratory Pseudomonas aeruginosa infections.FEBS Lett. 2016 Nov;590(21):3941-3959. doi: 10.1002/1873-3468.12454. Epub 2016 Nov 1. FEBS Lett. 2016. PMID: 27730639 Review.
-
The host genetic background defines diverse immune-reactivity and susceptibility to chronic Pseudomonas aeruginosa respiratory infection.Sci Rep. 2016 Nov 16;6:36924. doi: 10.1038/srep36924. Sci Rep. 2016. PMID: 27848994 Free PMC article.
-
Adhesins and receptors of Pseudomonas aeruginosa associated with infection of the respiratory tract.Microb Pathog. 1992 Oct;13(4):251-60. doi: 10.1016/0882-4010(92)90035-m. Microb Pathog. 1992. PMID: 1363702 Review.
Cited by
-
Best Practices in the Development and Use of Experimental Models of Bacterial Pneumonia: An Official American Thoracic Society Workshop Report.Am J Respir Cell Mol Biol. 2025 Aug;73(2):178-199. doi: 10.1165/rcmb.2025-0322ST. Am J Respir Cell Mol Biol. 2025. PMID: 40748059 Free PMC article.
-
Susceptibility Analysis in Several Mouse Strains Reveals Robust T-Cell Responses After Mycoplasma pneumoniae Infection in DBA/2 Mice.Front Cell Infect Microbiol. 2021 Jan 13;10:602453. doi: 10.3389/fcimb.2020.602453. eCollection 2020. Front Cell Infect Microbiol. 2021. PMID: 33520736 Free PMC article.
-
Pathogenicity and virulence of Pseudomonas aeruginosa: Recent advances and under-investigated topics.Virulence. 2025 Dec;16(1):2503430. doi: 10.1080/21505594.2025.2503430. Epub 2025 May 14. Virulence. 2025. PMID: 40353451 Free PMC article. Review.
References
-
- Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD, Beatty J, Beavis WD, Belknap JK, Bennett B, Berrettini W, Bleich A, Bogue M, Broman KW, Buck KJ, Buckler E, Burmeister M, Chesler EJ, Cheverud JM, Clapcote S, Cook MN, Cox RD, Crabbe JC, Crusio WE, Darvasi A, Deschepper CF, Doerge RW, Farber CR, Forejt J, Gaile D, Garlow SJ, Geiger H, Gershenfeld H, Gordon T, Gu J, Gu W, de Haan G, Hayes NL, Heller C, Himmelbauer H, Hitzemann R, Hunter K, Hsu HC, Iraqi FA, Ivandic B, Jacob HJ, Jansen RC, Jepsen KJ, Johnson DK, Johnson TE, Kempermann G, Kendziorski C, Kotb M, Kooy RF, Llamas B, Lammert F, Lassalle JM, Lowenstein PR, Lu L, Lusis A, Manly KF, Marcucio R, Matthews D, Medrano JF, Miller DR, Mittleman G, Mock BA, Mogil JS, Montagutelli X, Morahan G, Morris DG, Mott R, Nadeau JH, Nagase H, Nowakowski RS, O’Hara BF, Osadchuk AV, Page GP, Paigen B, Paigen K, Palmer AA, Pan HJ, Peltonen-Palotie L, Peirce J, Pomp D, Pravenec M, Prows DR, Qi Z, Reeves RH, Roder J, Rosen GD, Schadt EE, Schalkwyk LC, Seltzer Z, Shimomura K, Shou S, Sillanpaa MJ, Siracusa LD, Snoeck HW, Spearow JL, Svenson K, Tarantino LM, Threadgill D, Toth LA, Valdar W, de Villena FP, Warden C, Whatley S, Williams RW, Wiltshire T, Yi N, Zhang D, Zhang M, Zou F. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat Genet. 2004;36:1133–1137. doi: 10.1038/ng1104-1133. - DOI - PubMed
Publication types
MeSH terms
Grants and funding
- FFC#9/2014/Fondazione per la Ricerca sulla Fibrosi Cistica/International
- FFC#11/2015/Fondazione per la Ricerca sulla Fibrosi Cistica/International
- FFC#15/2016/Fondazione per la Ricerca sulla Fibrosi Cistica/International
- FFC#04/2017/Fondazione per la Ricerca sulla Fibrosi Cistica/International
- 2016/European Society of Clinical Microbiology and Infectious Diseases/International
LinkOut - more resources
Full Text Sources
Other Literature Sources