Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018;23(Suppl 1):13-18.
doi: 10.1007/s00772-018-0380-1. Epub 2018 Apr 10.

Pathophysiology of chronic limb ischemia

Affiliations
Review

Pathophysiology of chronic limb ischemia

F Simon et al. Gefasschirurgie. 2018.

Abstract

Chronic ischemia of the lower extremities is an everyday problem in vascular surgery clinics. In Germany, approximately 3% of all hospitalizations are due to peripheral artery disease (PAD), with critical limb ischemia (CLI) in particular showing a rapid increase. The consequences of chronic undersupply range from reduced walking distance to loss of limbs. At the beginning there are stress factors, such as hyperlipidemia (LDL), free radicals, arterial hypertension, infections or subclinical inflammation that interfere with endothelial homeostasis and cause endothelial dysfunction with increased permeability. Cells of the immune system are attracted and migrate into the vascular wall, where they lead to the degradation of matrix components and destabilization of the plaque. By changing the phenotype of smooth muscle cells and macrophages towards osteoclast-like cells, bone-like hardening of the vessel wall takes place. Above a vessel wall thickness of approximately 100 µm, hypoxia-induced factor (HIF-1α) is intensified by the lack of oxygen, which leads to an increase in growth factors, such as vascular endothelial growth factor (VEGF). This promotes angiogenesis, but it is not sufficient to compensate for a stenosed artery. Arteriogenesis refers to the growth of existing collateral vessels. The driving forces are the pressure gradient before and after the stenosis and the shear forces acting on the vessel walls. In the case of progressive stenosis, the compensatory capacities can be overtaxed and a manifest hypoxia in the tissue with regression of the obtained vascular structures and tissue atrophy occurs.

Die chronisch arterielle Ischämie der unteren Extremitäten stellt ein alltägliches Problem in gefäßchirurgischen Kliniken dar. In Deutschland sind etwa 3 % aller Hospitalisierungen auf eine periphere arterielle Verschlusskrankheit (PAVK) zurückzuführen, wobei vor allem die kritischen Ischämien stark zunehmen. Die Folgen der chronischen Ischämie reichen von eingeschränkter Gehstrecke bis hin zum Verlust der Extremität. Am Anfang stehen Stressfaktoren wie Hyperlipidämie (LDL), freie Radikale, arterielle Hypertonie, Infektionen oder subklinische Entzündungen, die die Endothelhomöostase stören. Es kommt zu einer Dysfunktion des Endothels mit erhöhter Durchlässigkeit. Zellen des Immunsystems werden angelockt und wandern in die Gefäßwand ein, wo sie zum Abbau von Matrixkomponenten und zur Destabilisierung des Plaques führen. Durch Änderung des Phänotyps von glatten Muskelzellen und Makrophagen entstehen osteoklastenähnliche Zellen, die zu Verhärtungen in der Gefäßwand führen. Ab einer Gefäßwandstärke von etwa 100 μm wird durch den Sauerstoffmangel Hypoxie induzierter Faktor (HIF-1α) verstärkt exprimiert, was zu einem Anstieg an Wachstumsfaktoren wie VEGF („vascular endothelial growth factor“) führt. Dadurch wird die Angiogenese als Kapillarenbildner gefördert, reicht aber nicht aus, um eine stenosierte Arterie zu kompensieren. Arteriogenese bezeichnet das Wachstum von bereits vorhandenen Kollateralgefäßen. Die treibenden Kräfte sind der Druckgradient vor und hinter der Stenose sowie die Scherkräfte, die auf die Gefäßwände einwirken. Bei voranschreitender Stenosierung können die Kompensationsfähigkeiten überfordert werden und es kommt zu einer manifesten Hypoxie im Gewebe mit Rückbildung der gewonnenen Gefäßstrukturen/Kollateralkreisläufen und Gewebsatrophie.

Keywords: Angiogenesis; Arteriogenesis; Chronic ischemia; Collaterals; Pathophysiology.

PubMed Disclaimer

Conflict of interest statement

Compliance with ethical guidelinesF. Simon, A. Oberhuber, N. Floros, P. Düppers, H. Schelzig and M. Duran declare that they have no competing interests. This article does not contain any studies with human participants or animals performed by any of the authors. The supplement containing this article is not sponsored by industry.

References

    1. Badimon L. Interleukin-18: a potent pro-inflammatory cytokine in atherosclerosis. Cardiovasc Res. 2012;96:172–175. doi: 10.1093/cvr/cvs226. - DOI - PubMed
    1. Badimon L, Vilahur G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J Intern Med. 2014;276:618–632. doi: 10.1111/joim.12296. - DOI - PubMed
    1. Burke AP, Farb A, Malcom GT, Liang Y, Smialek JE, Virmani R. Plaque rupture and sudden death related to exertion in men with coronary artery disease. JAMA. 1999;281:921–926. doi: 10.1001/jama.281.10.921. - DOI - PubMed
    1. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307. doi: 10.1038/nature10144. - DOI - PMC - PubMed
    1. Coats P, Jarajapu YPR, Hillier C, McGrath JC, Daly C. The use of fluorescent nuclear dyes and laser scanning confocal microscopy to study the cellular aspects of arterial remodelling in critical limb ischaemia. Exp Physiol. 2003;88:547–554. doi: 10.1113/eph8802552. - DOI - PubMed

LinkOut - more resources