Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Aug;16(4):519-529.
doi: 10.1007/s11914-018-0464-6.

Current Understanding of Epidemiology, Pathophysiology, and Management of Atypical Femur Fractures

Affiliations
Review

Current Understanding of Epidemiology, Pathophysiology, and Management of Atypical Femur Fractures

Jessica Starr et al. Curr Osteoporos Rep. 2018 Aug.

Abstract

Purpose of review: To summarize reports published since the 2013 American Society of Bone and Mineral Research Task Force Report on atypical femoral fractures (AFF).

Recent findings: The absolute incidence of AFFs remains low. AFFs are primarily associated with prolonged bisphosphonate (BP) exposure, but have also been reported in unexposed patients and those receiving denosumab for osteoporosis and metastatic bone disease. Asians may be more susceptible to AFFs. Lateral femoral bowing and varus hip geometry, which increase loading forces on the lateral femoral cortex, may increase AFF risk. Altered bone material properties associated with BP therapy may predispose to AFFs by permitting initiation and increasing propagation of micro-cracks. Relevant genetic mutations have been reported in patients with AFFs. Single X-ray absorptiometry femur scans permit early detection of incomplete and/or asymptomatic AFFs. Orthopedists recommend intramedullary rods for complete AFFs and for incomplete, radiologically advanced AFFs associated with pain and/or marrow edema on MRI. Teriparatide may advance AFF healing but few data support its efficacy. Greater understanding of biological and genetic predisposition to AFF may allow characterization of individual risk prior to initiating osteoporosis therapy and help allay fear in those at low risk for this complication, which remains rare in comparison to the osteoporotic fractures prevented by antiresorptive therapy.

Keywords: Atypical femur fracture; Bisphosphonates; Bone material properties; Denosumab; Hip geometry; Teriparatide.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest

Yu Kwang Donovan and Jessica Starr declare no conflict of interest.

Elizabeth Shane deceived grants from Amgen and Merck and is a co-chair of both ASBMR Task Forces on Atypical Femur Fractures.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Figures

Fig. 1
Fig. 1
(a) Femorotibial angle: the femorotibial angle (FTA) is the lateral angle between the axis of the femoral shaft and that of the tibial shaft. An increased FTA is called varus alignment while a decreased FTA is called valgus alignment. (b) Femur neck-shaft angle: a decreased femur neck-shaft angle is called coxa vara or varus alignment. An increased neck-shaft angle is called coxa valga or valgus alignment. (c) Femoral bowing angle: femoral bowing angle is line that best describes the midpoint of the endosteal canal of the femoral diaphysis was drawn in the proximal and the distal quarters
Fig. 1
Fig. 1
(a) Femorotibial angle: the femorotibial angle (FTA) is the lateral angle between the axis of the femoral shaft and that of the tibial shaft. An increased FTA is called varus alignment while a decreased FTA is called valgus alignment. (b) Femur neck-shaft angle: a decreased femur neck-shaft angle is called coxa vara or varus alignment. An increased neck-shaft angle is called coxa valga or valgus alignment. (c) Femoral bowing angle: femoral bowing angle is line that best describes the midpoint of the endosteal canal of the femoral diaphysis was drawn in the proximal and the distal quarters

References

    1. Odvina CV, Zerwekh JE, Rao DS, Maalouf N, Gottschalk FA, Pak CYC. Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab. 2005;90(3):1294–1301. doi: 10.1210/jc.2004-0952. - DOI - PubMed
    1. Goh SK, Yang KY, Koh JS, Wong MK, Chua SY, Chua DT, et al. Subtrochanteric insufficiency fractures in patients on alendronate therapy: a caution. J Bone Joint Surg Br. 2007;89(3):349–353. doi: 10.1302/0301-620X.89B3.18146. - DOI - PubMed
    1. Neviaser AS, Lane JM, Lenart BA, Edobor-Osula F, Lorich DG. Low-energy femoral shaft fractures associated with alendronate use. J Orthop Trauma. 2008;22(5):346–350. doi: 10.1097/BOT.0b013e318172841c. - DOI - PubMed
    1. Shane E, Burr D, Ebeling PR, Abrahamsen B, Adler RA, Brown TD, et al. Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2010;25(11):2267–94. - PubMed
    1. Shane E, Burr D, Abrahamsen B, Adler RA, Brown TD, Cheung AM, et al. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2014;29(1):1–23. - PubMed

MeSH terms