Mechanism of inhibition of transducin GTPase activity by fluoride and aluminum
- PMID: 2995338
Mechanism of inhibition of transducin GTPase activity by fluoride and aluminum
Abstract
Transducin, the guanyl nucleotide-binding protein of the retinal light-activated cGMP phosphodiesterase system, is structurally and functionally similar to the inhibitory and stimulatory guanyl nucleotide-binding proteins, Gi and Gs, of the adenylate cyclase complex. All are heterotrimers composed of alpha, beta, and gamma subunits. Gs and Gi can be activated by NaF with AlCl3 as well as by agonists acting through specific receptors. The effects of NaF and AlCl3 on transducin were investigated in a reconstituted system consisting of the purified subunits of transducin (T alpha, T beta, gamma) and rhodopsin. NaF noncompetitively inhibited the GTPase activity of T alpha in a concentration- and time-dependent manner. Inhibition by NaF was enhanced synergistically by AlCl3 which alone only slightly inhibited GTPase activity. None of the other anions tested reproduced the effect of fluoride. Fluoride inhibited [3H]guanosine 5'-(beta, gamma-imido)triphosphate binding to T alpha and release of bound GDP. The ADP-ribosylation of T alpha by pertussis toxin and binding of T alpha to rhodopsin, both of which are enhanced in the presence of T beta gamma, were inhibited by NaF and AlCl3. These findings are consistent with the hypothesis that fluoride enhances the dissociation of T alpha from T beta gamma, resulting in the inhibition of GTP-GDP exchange, and therefore, GTP hydrolysis.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
